CUFE, M. Sc., 2015-2016

Computers & Numerical Analysis (STR 681)

Introduction

Dr. Maha Moddather

Structural Engineering Department

Faculty of Engineering – Cairo University

mahamoddather@eng.cu.edu.eg

Spring 2016

Why Do We Need Numerical Analysis Methods?

- Numerical methods are techniques by which mathematical problems are formulated so that they can be solved with arithmetic operations.

All numerical methods involves large numbers of arithmetic calculations.

- There are three approaches for problem solving using non-computer methods.
 - ✓ Analytical (Exact Approach).
 - ✓ Graphical Solution.
 - ✓ Calculators and Slide Rules.

- 1. Analytical (exact approach):
 - Excellent insight into behavior.
 - Derived for only a limited class of problems.
 - Approximated for linear models, simple geometry, and low dimensionality.
 - Limited practical value
 - Real problems are nonlinear, complex, in shape and processes.

- 2. Graphical solutions:
 - > Characterize the behavior of systems.
 - Used to solve complex problems.
 - Not very precise.
 - Extremely tedious and awkward to implement.

3. Calculators and Slide Rules:

> Implement numerical methods manually.

>Adequate for solving complex solutions.

➢ But slow and tedious.

Consistency results are elusive: blunders.

Computers and numerical methods provide an alternative method for such calculations.

Using computer power, problems can be approached without large simplifications or time-intense techniques.

Acknowledgement

THIS IS TO THANK DR. HESHAM SOBHY, DR. ASMAA

HASSAN AND DR. AHMED AMIR BAYOUMY FOR

GIVING THEIR VOLUNTARILY HELP IN PREPARING THIS

PRESENTATION

Course Outline

Regulations

إنش ٦٨١: الحاسب والتحليل عددي

مقدمة: البرمجة، حل المسائل، الخوارزميات، خريطة الانسياب، مقدمة عن التحليل الرقمى باستخدام الحاسب، تحليل الخطأ: أخطاء التمثيل والقطع والتقريب، المجموعات الخطية من المعادلات الجبرية: مشاكل الصفرية وسوء الضبط والدقة، طرق الإزالة: طرق حل المصفوفات الشريحية المتماثلة، مسألة القيم الذاتية: طريق الأس، طريقة جاكوبس، الطريقة المباشرة.

STR681 Computer and Numerical Analysis

Introduction: programming, problem solving, algorithm, flowcharting; Introduction to computer based numerical analysis; Error analysis: modeling, truncation, and round off errors; Linear sets of algebraic equations: singularity, ill-conditioning, and accuracy; Elimination techniques: banded and symmetric solvers, Eigen value problem: power method, Jacobi method, direct method.

- □ Systems of Linear Algebraic Equations
- Nonlinear Equations
- Polynomial Approximation & Interpolation
- Numerical Differentiation & Difference
 Formulas
- Numerical Integration
- Discretization & Finite Difference Methods

- Weighted Residual Approach
- D Piecewise Functions
- □ Finite Element Methods
- **Optimization**
- **G** Curve Fitting
- Ordinary Differential Equations
- Partial Differential Equations

- Perturbation methods
- □ Fourier analysis
- □ Approximations & Round-off Errors

Programming Language

MATLAB Program

Grading System

Systems of Linear Algebraic Equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0$$

Systems of Linear Algebraic Equations

□ Systems of linear algebraic equations:

These problems are concerned with the value of a set of variables that satisfies a set of linear equations.

Given the a's and the c's, solve $a_{11}x_1 + a_{12}x_2 = c_1$ $a_{21}x_1 + a_{22}x_2 = c_2$ for the x's.

Systems of Linear Algebraic Equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

 $a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n$

 $[A]{X} = {B}$

 $[B] = [b_1 \quad b_2 \quad \cdots \quad b_m]$ Row vector, n = 1 $[C] = \begin{bmatrix} c_1 \\ c_2 \\ \cdot \\ \cdot \\ \cdot \end{bmatrix}$ Column vector, m = 1 $\Gamma_{a_{11}}$ a_{12} a_{13} Sq

quare matrix, n = m
$$[A] = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

Symmetric matrix

$$[A] = \begin{bmatrix} 3 & 1 & 2 \\ 1 & 3 & 7 \\ 2 & 7 & 8 \end{bmatrix}$$

1

27

Г 5

$$a_{ij} = a_{ji}$$

Diagonal matrix $[A] = \begin{bmatrix} a_{11} & & & \\ & a_{22} & & \\ & & a_{33} & \\ & & & a_{44} \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 8 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ Identity matrix $[I] = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 \end{bmatrix} \begin{bmatrix} 1 & & & \\ & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Upper triangular $[A] = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ & a_{22} & a_{23} & a_{24} \\ & & & a_{33} & a_{34} \end{bmatrix} \begin{bmatrix} 1 & 4 & 3 \\ 0 & 8 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 6 9 a_{44} 0 Lower triangular matrix $\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} a_{11} & & & & \\ a_{21} & a_{22} & & & \\ a_{31} & a_{32} & a_{33} & \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} 5 & 8 & 0 & 0 \\ 7 & 2 & 1 & 0 \\ 2 & 7 & 6 & 11 \end{bmatrix}$ $[A] = \begin{bmatrix} a_{11} & a_{12} & & & \\ a_{21} & a_{22} & a_{23} & & \\ & a_{32} & a_{33} & a_{34} & & \\ & & a_{43} & a_{44} & & \\ \end{bmatrix} \begin{bmatrix} 5 & 8 & 3 & \\ 0 & 2 & 1 & \\ 0 & 0 & 6 & \\ \end{bmatrix} \begin{bmatrix} 0 & 2 & 1 & \\ 0 & 0 & 6 & \\ \end{bmatrix}$ () Banded matrix Ex., Band width = 3(tridiagonal matrix)

[A] = [B] if $a_{ij} = b_{ij}$ for all *i* and *j*.

[A] + [B] : $c_{ij} = a_{ij} + b_{ij}$

$$\begin{bmatrix} 1 & 4 \\ 2 & 6 \end{bmatrix} + \begin{bmatrix} 2 & 8 \\ 0 & 9 \end{bmatrix} = \begin{bmatrix} 3 & 12 \\ 2 & 15 \end{bmatrix}$$

$$d_{ij} = e_{ij} - f_{ij}$$

$$\begin{bmatrix} 1 & 4 \\ 2 & 6 \end{bmatrix} - \begin{bmatrix} 1 & 2 & 8 \\ 0 & 9 \end{bmatrix} = \begin{bmatrix} -1 & -4 \\ 2 & -3 \end{bmatrix}$$

([A] + [B]) + [C] = [A] + ([B] + [C])

$$[D] = g[A] = \begin{bmatrix} ga_{11} & ga_{12} & \cdots & ga_{1m} \\ ga_{21} & ga_{22} & \cdots & ga_{2m} \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ ga_{n1} & ga_{n2} & \cdots & ga_{nm} \end{bmatrix}$$

$$2x\begin{bmatrix} 1 & 4 & 5 \\ 7 & 12 & 2 \\ 8 & 3 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 8 & 10 \\ 14 & 24 & 4 \\ 16 & 6 & 8 \end{bmatrix}$$

[C] = [A][B]

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

[*A*] is an *n* by *m* matrix, [*B*] could be an *m* by *I* matrix column row

[A][B] = [C]

([A][B])[C] = [A]([B][C])

[A]([B] + [C]) = [A][B] + [A][C]

([A] + [B])[C] = [A][C] + [B][C]

 $[A][B] \neq [B][A]$

If A is a square matrix: $[A][A]^{-1} = [A]^{-1}[A] = [I]$

A⁻¹ is the inverse of A

$$[A]^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

Ex., A =
$$\begin{bmatrix} 5 & 9 \\ 7 & 2 \end{bmatrix} \longrightarrow A^{-1} = \frac{1}{5x2 - 9x7} \begin{bmatrix} 2 & -9 \\ -7 & 5 \end{bmatrix}$$

If A is a square matrix:
$$[A] = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

A^T is the transpose of A
$$[A]^T = \begin{bmatrix} a_{11} & a_{21} & a_{31} & a_{41} \\ a_{12} & a_{22} & a_{32} & a_{42} \\ a_{13} & a_{23} & a_{33} & a_{43} \\ a_{14} & a_{24} & a_{34} & a_{44} \end{bmatrix}$$

$$\operatorname{tr}\left[A\right] = \sum_{i=1}^{n} a_{ii}$$

tr [A] is the trace of matrix [A]

Ex., A =
$$\begin{bmatrix} 2 & 3 & 4 \\ 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix}$$

$$tra[A] = 2 + 6 + 10 = 18$$

For a 2 x 2 determinant
$$D = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

Ex.,
$$D = \begin{vmatrix} 3 & 2 \\ -1 & 2 \end{vmatrix} = 3(2) - 2(-1) = 8$$
For a 3 x 3 determinant
$$D = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
 minor

$$D = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$
Ex., $D = \begin{vmatrix} 0.3 & 0.52 & 1 \\ 0.5 & 1 & 1.9 \\ 0.1 & 0.3 & 0.5 \end{vmatrix}$
 $D = 0.3 \times \begin{vmatrix} 1 & 1.9 \\ 0.3 & 0.5 \end{vmatrix} - 0.52 \times \begin{vmatrix} 0.5 & 1.9 \\ 0.1 & 0.5 \end{vmatrix} + 1 \times \begin{vmatrix} 0.5 & 1 \\ 0.1 & 0.3 \end{vmatrix}$
 $D = 0.3 \times (1 \times 0.5 - 0.3 \times 1.9) - 0.52 \times 0.06 + 1 \times 0.05 = -0.0022$

"Augmentation"

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \longrightarrow \begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & | & 1 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & | & 0 & 1 & 0 \\ a_{31} & a_{32} & a_{33} & | & 0 & 0 & 1 \end{bmatrix}$$

Such an expression has utility when we must perform a set of identical operations on two matrices. Thus, we can perform the operations on the single augmented matrix rather than on the two individual matrices.

 $[A]{X} = {B}$

$$[A] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$
$$\{X\}^T = \lfloor X_1 \quad X_2 \quad \cdots \quad X_n \rfloor$$
$$\{B\}^T = \lfloor b_1 \quad b_2 \quad \cdots \quad b_n \rfloor$$

No division in Matrices

$$[A]{X} = {B}$$

$$[A]^{-1}[A]{X} = [A]^{-1}{B} \qquad [A]^{-1}[A] = [I]$$

$$\{X\} = [A]^{-1}\{B\}$$

Solving Linear Algebraic Equations

> Solving small number of equations:

 \checkmark The Graphical Method.

✓ Cramer's Rule.

 \checkmark The Elimination of Unknowns.

Gauss Elimination

- Gauss-Jordan
- LU Decomposition
- Gauss Seidel

Solving Linear Algebraic Equations

> Direct Methods:

✓ Cramer's Rule.

 \checkmark Gauss Elimination.

✓ Gauss Jordan.

✓ Banded Matrix.

✓ Skyline

Iterative Methods

✓ Jacobi Iteration.

✓ Gauss-Seidel

Suitable for small number of equations (≤ 3)

Is there cases where there will be no solution?

Is there cases where there will be no solution?

Is there cases where there will be no solution?

This rule states that each unknown in a system of linear algebraic equations may be expressed as a fraction of two determinants with <u>denominator D</u> and with the <u>numerator obtained from D</u> by <u>replacing</u> the <u>column of</u> <u>coefficients of the unknown</u> in question by the constants $\underline{b_1}, \underline{b_2}, \ldots, \underline{b_n}$. For example, x_1 would be computed as:

$$x_{1} = \frac{\begin{vmatrix} b_{1} & a_{12} & a_{13} \\ b_{2} & a_{22} & a_{23} \\ b_{3} & a_{32} & a_{33} \end{vmatrix}}{D}$$

Ex.,
$$0.3x_1 + 0.52x_2 + x_3 = -0.01$$

 $0.5x_1 + x_2 + 1.9x_3 = 0.67$
 $0.1x_1 + 0.3x_2 + 0.5x_3 = -0.44$

$$D = \begin{vmatrix} 0.3 & 0.52 & 1 \\ 0.5 & 1 & 1.9 \\ 0.1 & 0.3 & 0.5 \end{vmatrix} = 0.3(-0.07) - 0.52(0.06) + 1(0.05) = -0.0022$$

Ex.,
$$0.3x_1 + 0.52x_2 + x_3 = -0.01$$

 $0.5x_1 + x_2 + 1.9x_3 = 0.67$
 $0.1x_1 + 0.3x_2 + 0.5x_3 = -0.44$

$$\begin{vmatrix} -0.01 & 0.52 & 1 \\ 0.67 & 1 & 1.9 \\ -0.44 & 0.3 & 0.5 \end{vmatrix} = \frac{0.03278}{-0.0022} = -14.9$$

Ex.,
$$0.3x_1 + 0.52x_2 + x_3 = -0.01$$

 $0.5x_1 + x_2 + 1.9x_3 = 0.67$
 $0.1x_1 + 0.3x_2 + 0.5x_3 = -0.44$

$$\begin{vmatrix} 0.3 & -0.01 & 1 \\ 0.5 & 0.67 & 1.9 \\ 0.1 & -0.44 & 0.5 \end{vmatrix} = \frac{0.0649}{-0.0022} = -29.5$$

Ex.,
$$0.3x_1 + 0.52x_2 + x_3 = -0.01$$

 $0.5x_1 + x_2 + 1.9x_3 = 0.67$
 $0.1x_1 + 0.3x_2 + 0.5x_3 = -0.44$

$$\begin{vmatrix} 0.3 & 0.52 & -0.01 \\ 0.5 & 1 & 0.67 \\ -0.44 \end{vmatrix} = \frac{-0.04356}{-0.0022} = 19.8$$

The Elimination of Unknowns

- The basic strategy is to multiply the equations by constants so that one of the unknowns will be eliminated when the two equations are combined.
- The result is a single equation that can be solved for the remaining unknown.
- This value can then be substituted into either of the original equations to compute the other variable.

The Elimination of Unknowns

The Elimination of Unknowns

Ex.,
$$3x_1 + 2x_2 = 18$$

 $-x_1 + 2x_2 = 2$

$$x_1 = \frac{a_{22}b_1 - a_{12}b_2}{a_{11}a_{22} - a_{12}a_{21}} = \frac{2(18) - 2(2)}{3(2) - 2(-1)} = 4$$

$$x_2 = \frac{a_{11}b_2 - a_{21}b_1}{a_{11}a_{22} - a_{12}a_{21}} = \frac{3(2) - (-1)18}{3(2) - 2(-1)} = 3$$

The procedure consisted of two steps:

- 1. The equations were manipulated to eliminate one of the unknowns from the equations. The result of this elimination step was that we had one equation with one unknown.
- 2. Consequently, this equation could be solved directly and the result back-substituted into one of the original equations to solve for the remaining unknown.

Ex.,

$$\begin{bmatrix} 3 & -0.1 & -0.2 & 7.85 \\ 0 & 7.00333 & -0.29333 & -19.5617 \\ \hline 0 & 0 & 10.0120 & 70.0843 \end{bmatrix}$$

$$x_3 = \frac{70.0843}{10.0120} = 7.0000$$

$$\begin{bmatrix} 3 & -0.1 & -0.2 & 7.85 \\ \hline 0 & 7.00333 & -0.29333 & -19.5617 \\ \hline 0 & 0 & 10.0120 & 70.0843 \end{bmatrix}$$

 $7.00333x_2 - 0.293333(7.0000) = -19.5617$

$$x_2 = \frac{-19.5617 + 0.293333(7.0000)}{7.00333} = -2.50000$$

$$\begin{bmatrix} 3 & -0.1 & -0.2 & 7.85 \\ 0 & 7.00333 & -0.29333 & -19.5617 \\ 0 & 0 & 10.0120 & 70.0843 \end{bmatrix}$$

$$3x_1 - 0.1(-2.50000) - 0.2(7.0000) = 7.85$$

$$x_1 = \frac{7.85 + 0.1(-2.50000) + 0.2(7.0000)}{3} = 3.00000$$

Dividing by zero (or close to zero)

Solution: "Partial pivoting" switch rows and use the largest value as a pivot Pivot=0 $2x_2 + 3x_3 = 8$ $4x_1 + 6x_2 + 7x_3 = -3$ $2x_1 + x_2 + 6x_3 = 5$

Round-off errors

Important for more than 100 equations

You should always substitute your answers back into the original equations to check whether a substantial error has occurred.

Solution: scaling & use more significant fraction figures

► Use more significant fraction figures

$$\begin{bmatrix} 2 & 100000 & 100000 \\ 1 & 1 & 2 \end{bmatrix} \Longrightarrow \begin{bmatrix} 2 & 100000 & 100000 \\ 0 & -499999 & -49998 \end{bmatrix}$$
$$\mathbf{x}_{2} = \frac{-499988}{-499999} = 0.999988$$

 $2x_1 + 100,000x0.99998 = 100,000 \implies x_1 = 1$

Use scaling that maximum coefficient in each row is 1

- 3. Singular systems (D = 0)
- 4. Ill conditioned systems
 - Ill-conditioning is that a wide range of answers can approximately satisfy the equations.
 - Because round-off errors can induce small changes in the coefficients, these artificial changes can lead to large solution errors for ill-conditioned systems.
 - ▶ $D \approx 0$ (scaling numbers in the matrix to be less than one)
 - Solution: use more significant figures
Drawbacks of Gauss Elimination

Ex.,
$$x_1 + 2x_2 = 10$$

 $1.1x_1 + 2x_2 = 10.4$

$$\begin{bmatrix} 1 & 2 & | & 10 \\ 1.1 & 2 & | & 10.4 \end{bmatrix} \Longrightarrow \begin{bmatrix} 1 & 2 & | & 10 \\ 0 & -0.2 & | & -0.6 \end{bmatrix}$$
 $x_2 = \frac{-0.6}{-0.2} = 3$
 $x_1 + 2x_3 = 10 \implies x_1 = 4$

Drawbacks of Gauss Elimination

Replace 1.1 by 1.05

$$\begin{bmatrix} 1 & 2 & 10 \\ 1.05 & 2 & 10.4 \end{bmatrix} \Longrightarrow \begin{bmatrix} 1 & 2 & 10 \\ 0 & -0.1 & -0.1 \end{bmatrix}$$
$$\mathbf{x}_2 = \frac{-0.1}{-0.1} = 1$$
$$\mathbf{x}_1 + 2x\mathbf{1} = 1\mathbf{0} \implies \mathbf{x}_1 = \mathbf{8}$$

Drawbacks of Gauss Elimination

Gauss Elimination

