CUFE, M. Sc., 2015-2016

Computers \& Numerical Analysis (STR 681)

Introduction

Dr. Maha Moddather
Structural Engineering Department
Faculty of Engineering - Cairo University
mahamoddather@eng.cu.edu.eg

Spring 2016

Why Do We Need Numerical Analysis Methods?

Introduction

> Numerical methods are techniques by which mathematical problems are formulated so that they can be solved with arithmetic operations.
> All numerical methods involves large numbers of arithmetic calculations.

Introduction

$>$ There are three approaches for problem solving using non-computer methods.
\checkmark Analytical (Exact Approach).
\checkmark Graphical Solution.
\checkmark Calculators and Slide Rules.

Introduction

1. Analytical (exact approach):
> Excellent insight into behavior.
> Derived for only a limited class of problems.
> Approximated for linear models, simple geometry, and low dimensionality.
> Limited practical value

- Real problems are nonlinear, complex, in shape and processes.

Introduction

2. Graphical solutions:
> Characterize the behavior of systems.
> Used to solve complex problems.
> Not very precise.
> Extremely tedious and awkward to implement.

Introduction

3. Calculators and Slide Rules:
>Implement numerical methods manually.
>Adequate for solving complex solutions.
>But slow and tedious.
>Consistency results are elusive: blunders.

Introduction

> Computers and numerical methods provide an alternative method for such calculations.
> Using computer power, problems can be approached without large simplifications or timeintense techniques.

Acknowledgement

THIS IS TO THANK DR. HESHAM SOBHY, DR. ASMAA HASSAN AND DR. AHMED AMIR BAYOUMY FOR

GIVING THEIR VOLUNTARILY HELP IN PREPARING THIS
PRESENTATION

Course Outline

Regulations

 جاكوبس، الطريقةّة المباشُرة.

STR681 Computer and Numerical Analysis

Introduction: programming, problem solving, algorithm, flowcharting; Introduction to computer based numerical analysis; Error analysis: modeling, truncation, and round off errors; Linear sets of algebraic equations: singularity, ill-conditioning, and accuracy; Elimination techniques: banded and symmetric solvers, Eigen value problem: power method, Jacobi method, direct method.

Outline

- Systems of Linear Algebraic Equations
- Nonlinear Equations
- Polynomial Approximation \& Interpolation
- Numerical Differentiation \& Difference

Formulas

- Numerical Integration
- Discretization \& Finite Difference Methods

Outline

- Weighted Residual Approach
- Piecewise Functions
- Finite Element Methods
- Optimization
- Curve Fitting
- Ordinary Differential Equations
- Partial Differential Equations

Outline

- Perturbation methods
- Fourier analysis
- Approximations \& Round-off Errors

Outline

Programming Language

MATLAB Program

Grading System

Grading System

Systems of Linear Algebraic Equations

$$
\left(\begin{array}{cc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0 \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=0 \\
\vdots & \vdots \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=0
\end{array}\right)
$$

Systems of Linear Algebraic Equations

D Systems of linear algebraic equations:
$>$ These problems are concerned with the value of a set of variables that satisfies a set of linear equations.

Given the a 's and the d 's, solve
$a_{11} x_{1}+a_{12} x_{2}=c_{1}$
$a_{21} x_{1}+a_{22} x_{2}=c_{2}$ for the x 's.

Systems of Linear Algebraic Equations

$$
\begin{gathered}
a_{11} X_{1}+a_{12 X_{2}}+\cdots+a_{1 n} X_{n}=b_{1} \\
a_{21 X_{1}}+a_{22 X_{2}}+\cdots+a_{2 n} X_{n}=b_{2} \\
\cdot \\
\cdot \\
\cdot \\
a_{n 1} X_{1}+a_{n 2} X_{2}+\cdots+a_{n n} X_{n}=b_{n}
\end{gathered}
$$

$$
[\mathrm{A}]\{\mathrm{X}\}=\{\mathrm{B}\}
$$

Matrix Notations

Matrix Notations

Row vector, $\mathrm{n}=1$

$$
[B]=\left[\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{m}
\end{array}\right]
$$

Column vector, $m=1$

$$
[C]=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\cdot \\
\cdot \\
\cdot \\
c_{n}
\end{array}\right]
$$

Square matrix, $\mathrm{n}=\mathrm{m} \quad[A]=\left[\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44}\end{array}\right]$

Matrix Notations

Matrix Notations

Upper triangular $[A]=\left[\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ & a_{22} & a_{23} & a_{24} \\ & & a_{33} & a_{34} \\ & & & a_{44}\end{array}\right]\left[\begin{array}{cccc}1 & 4 & 3 & 6 \\ 0 & 8 & 0 & 4 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & 0 & 11\end{array}\right]$

Matrix Operating Rules

$$
\begin{aligned}
& {[A]=} {[B] \text { if } a_{i j}=b_{i j} \text { for all } i \text { and } j . } \\
& {\left[\begin{array}{lll}
1 & 4 & 5 \\
7 & 12 & 2 \\
8 & 3 & 4
\end{array}\right]=\left[\begin{array}{ccc}
1 & 4 & 5 \\
7 & 12 & 2 \\
8 & 3 & 4
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
1 & 4 & 5 \\
7 & 12 & 2 \\
8 & 3 & 4
\end{array}\right] \neq\left[\begin{array}{ccc}
1 & 4 & 5 \\
7 & 12 & 2 \\
8 & 3 & 10
\end{array}\right] }
\end{aligned}
$$

Matrix Operating Rules

$$
\begin{aligned}
& {[A]+[B]:} \\
& c_{i j}=a_{i j}+b_{i j} \\
& {\left[\begin{array}{ll}
1 & 4 \\
2 & 6
\end{array}\right]+\left[\begin{array}{ll}
\hat{2} & 8 \\
0 & 9
\end{array}\right]=\left[\begin{array}{ll}
\overrightarrow{3} & 12 \\
2 & 15
\end{array}\right]} \\
& {\left[\begin{array}{ll}
1 & 4 \\
2 & 6
\end{array}\right]-\left[\begin{array}{cc}
\hat{2} & 8 \\
0 & 9
\end{array}\right]=\left[\begin{array}{cc}
\overrightarrow{-1} & -4 \\
2 & -3
\end{array}\right]}
\end{aligned}
$$

Matrix Operating Rules

$[A]+[B]=[B]+[A]$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 4 \\
2 & 6
\end{array}\right]+\left[\begin{array}{ll}
2 & 8 \\
0 & 9
\end{array}\right]=\left[\begin{array}{ll}
3 & 12 \\
2 & 15
\end{array}\right]} \\
& {\left[\begin{array}{ll}
2 & 8 \\
0 & 9
\end{array}\right]+\left[\begin{array}{ll}
1 & 4 \\
2 & 6
\end{array}\right]=\left[\begin{array}{ll}
3 & 12 \\
2 & 15
\end{array}\right]}
\end{aligned}
$$

$$
([A]+[B])+[C]=[A]+([B]+[C])
$$

Matrix Operating Rules

$$
\begin{aligned}
& {[D]=g[A]=\left[\begin{array}{cccc}
g a_{11} & g a_{12} & \cdots & g a_{1 m} \\
g a_{21} & g a_{22} & \cdots & g a_{2 m} \\
\vdots & \vdots & & \vdots \\
\vdots & \vdots & & \vdots \\
g a_{n 1} & g a_{n 2} & \cdots & g a_{n m}
\end{array}\right]} \\
& 2 x\left[\begin{array}{ccc}
1 & 4 & 5 \\
7 & 12 & 2 \\
8 & 3 & 4
\end{array}\right]=\left[\begin{array}{ccc}
2 & 8 & 10 \\
14 & 24 & 4 \\
16 & 6 & 8
\end{array}\right]
\end{aligned}
$$

Matrix Operating Rules

$$
\begin{aligned}
& {[C]=[A][B]} \\
& c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
\end{aligned}
$$

$[A]$ is an $n \underset{\text { column }}{m}$ matrix, $[B]$ could be an $\underset{\text { row }}{m}$ by l matrix

Matrix Operating Rules

Matrix Operating Rules

$$
\begin{aligned}
& {\left[\begin{array}{cc}
-3 & -1 \\
8 & 6 \\
0 & 4
\end{array}\right]\left[\begin{array}{ll}
5 & 9 \\
7 & \frac{2}{1}
\end{array}\right]=\left[\begin{array}{cc}
22 & 3 \times 9+1 \times 2 \\
? & ? \\
? & ?
\end{array}\right]} \\
& \left.\left[\begin{array}{lll}
3 & 1 \\
8 & 6 \\
0 & 4
\end{array}\right] \begin{array}{ll}
7 & 9 \\
7 & 2
\end{array}\right]=\left[\begin{array}{ll}
22 & 29 \\
82 & 84 \\
28 & 8
\end{array}\right] \\
& {\left[\begin{array}{cc}
3 & 1 \\
8-6 \\
0 & -6
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{5} & 9 \\
\vdots & 2
\end{array}\right]=\left[\begin{array}{cc}
22 & 29 \\
8 \times 5+6 \times 7 & ? \\
? & ?
\end{array}\right]}
\end{aligned}
$$

Matrix Operating Rules

$$
\begin{aligned}
& ([A][B])[C]=[A]([B][C]) \\
& {[A]([B]+[C])=[A][B]+[A][C]} \\
& ([A]+[B])[C]=[A][C]+[B][C]
\end{aligned}
$$

$$
[A][B] \neq[B][A]
$$

Matrix Operating Rules

If A is a square matrix: $[A][A]^{-1}=[A]^{-1}[A]=[I]$
A^{-1} is the inverse of A

$$
[A]^{-1}=\frac{1}{a_{11} a_{22}-a_{12} a_{21}}\left[\begin{array}{rr}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]
$$

$$
\text { Ex., } \mathrm{A}=\left[\begin{array}{ll}
5 & 9 \\
7 & 2
\end{array}\right] \quad \square \mathrm{A}^{-1}=\frac{1}{5 \times 2-9 \times 7}\left[\begin{array}{cc}
2 & -9 \\
-7 & 5
\end{array}\right]
$$

Matrix Operating Rules

If A is a square matrix: $\quad[A]=\left[\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44}\end{array}\right]$
\mathbf{A}^{T} is the transpose of $\mathbf{A} \quad[A]^{T}=\left[\begin{array}{llll}a_{11} & a_{21} & a_{31} & a_{41} \\ a_{12} & a_{22} & a_{32} & a_{42} \\ a_{13} & a_{23} & a_{33} & a_{43} \\ a_{14} & a_{24} & a_{34} & a_{44}\end{array}\right]$

Matrix Operating Rules

$$
\operatorname{tr}[A]=\sum_{i=1}^{n} a_{i i}
$$

$\operatorname{tr}[\mathrm{A}]$ is the trace of matrix [A]

Matrix Operating Rules

For a 2×2 determinant $D=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|=a_{11} a_{22}-a_{12} a_{21}$

Ex., $\quad D=\left|\begin{array}{rr}3 & 2 \\ -1 & 2\end{array}\right|=3(2)-2(-1)=8$

Matrix Operating Rules

$$
\text { Ex., } D=\left|\begin{array}{ccc}
0.3 & 0.52 & 1 \\
0.5 & 1 & 1.9 \\
0.1 & 0.3 & 0.5
\end{array}\right|
$$

$$
\mathrm{D}=0.3 \times\left|\begin{array}{cc}
1 & 1.9 \\
0.3 & 0.5
\end{array}\right|-0.52 \times\left|\begin{array}{cc}
0.5 & 1.9 \\
0.1 & 0.5
\end{array}\right|+1 \times\left|\begin{array}{cc}
0.5 & 1 \\
0.1 & 0.3
\end{array}\right|
$$

$$
D=0.3 \times(1 \times 0.5-0.3 \times 1.9)-0.52 \times 0.06+1 \times 0.05=-0.0022
$$

Matrix Operating Rules

"Augmentation"

$$
[A]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \square[A]=\left[\begin{array}{lll:lll}
a_{11} & a_{12} & a_{13} & 1 & 0 & 0 \\
a_{21} & a_{22} & a_{23} & 0 & 1 & 0 \\
a_{31} & a_{32} & a_{33} & 0 & 0 & 1
\end{array}\right]
$$

Such an expression has utility when we must perform a set of identical operations on two matrices. Thus, we can perform the operations on the single augmented matrix rather than on the two individual matrices.

Matrix Operating Rules

$$
\begin{aligned}
& {[A]\{X\}=\{B\}} \\
& {[A]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]} \\
& \left.\{X\}^{T}=\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right\rfloor \\
& \{B\}^{T}=\left\lfloor\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{n}
\end{array}\right\rfloor
\end{aligned}
$$

No division in Matrices

Matrix Operating Rules

$$
[A]\{X\}=\{B\}
$$

$$
[A]^{-1}[A]\{X\}=[A]^{-1}\{B\} \quad[A]^{-1}[A]=[I]
$$

$$
\{X\}=[A]^{-1}\{B\}
$$

Solving Linear Algebraic Equations

> Solving small number of equations:
\checkmark The Graphical Method.
\checkmark Cramer's Rule.
\checkmark The Elimination of Unknowns.
> Gauss Elimination
> Gauss-Jordan
> LU Decomposition
$>$ Gauss Seidel

Solving Linear Algebraic Equations

> Direct Methods:
\checkmark Cramer's Rule.
\checkmark Gauss Elimination.
\checkmark Gauss Jordan.
\checkmark Banded Matrix.
\checkmark Skyline
$>$ Iterative Methods
\checkmark Jacobi Iteration.
\checkmark Gauss-Seidel

The Graphical Method

Suitable for small number of equations (≤ 3)

$$
\begin{aligned}
& a_{11} X_{1}+a_{12} X_{2}=b_{1} \\
& a_{21} X_{1}+a_{22} X_{2}=b_{2}
\end{aligned}
$$

The Graphical Method

Ex., Solve

$$
\begin{aligned}
& 3 x_{1}+2 x_{2}=18 \\
& -x_{1}+2 x_{2}=2
\end{aligned}
$$

$$
3 x_{1}+2 x_{2}=18
$$

$$
x_{2}=\frac{-\frac{3}{2} x_{1}}{-\sqrt{9} \text { intercept }}
$$

The Graphical Method

$$
\begin{array}{ll}
\text { Ex., Solve } & 3 x_{1}+2 x_{2}=18 \\
& -x_{1}+2 x_{2}=2
\end{array}
$$

$$
-x_{1}+2 x_{2}=2
$$

The Graphical Method

$$
\begin{array}{ll}
\text { Ex., Solve } & 3 x_{1}+2 x_{2}=18 \\
& -x_{1}+2 x_{2}=2
\end{array}
$$

The Graphical Method

Is there cases where there will be no solution?

Parallel Lines: No solution (Singular system)

The Graphical Method

Is there cases where there will be no solution?

Coincident Lines: Infinite solutions
(Singular system)

The Graphical Method

Is there cases where there will be no solution?

III conditioned system

Cramer's Rule

This rule states that each unknown in a system of linear algebraic equations may be expressed as a fraction of two determinants with denominator D and with the numerator obtained from D by replacing the column of coefficients of the unknown in question by the constants $\underline{b}_{1} \underline{b}_{2} \ldots, \underline{b}_{\underline{n}}$. For example, x_{1} would be computed as:

$$
x_{1}=\frac{\left|\begin{array}{lll}
b_{1} & a_{12} & a_{13} \\
b_{2} & a_{22} & a_{23} \\
b_{3} & a_{32} & a_{33}
\end{array}\right|}{D}
$$

Cramer's Rule

Ex., $0.3 x_{1}+0.52 x_{2}+x_{3}=-0.01$
$0.5 x_{1}+x_{2}+1.9 x_{3}=0.67$
$0.1 x_{1}+0.3 x_{2}+0.5 x_{3}=-0.44$

$$
D=\left|\begin{array}{ccc}
0.3 & 0.52 & 1 \\
0.5 & 1 & 1.9 \\
0.1 & 0.3 & 0.5
\end{array}\right|=0.3(-0.07)-0.52(0.06)+1(0.05)=-0.0022
$$

Cramer's Rule

Ex.,	$0.3 x_{1}+0.52 x_{2}+x_{3}=-0.01$
	$0.5 x_{1}+x_{2}+1.9 x_{3}=0.67$
	$0.1 x_{1}+0.3 x_{2}+0.5 x_{3}=-0.44$

$$
x_{1}=\frac{\left|\begin{array}{|c|cc|}
\hline-0.01 \\
0.67 & 0.52 & 1 \\
1 & 1.9 \\
-0.44 \\
0.3 & 0.5
\end{array}\right|}{-0.0022}=\frac{0.03278}{-0.0022}=-14.9
$$

Cramer's Rule

$$
\begin{aligned}
& \text { Ex., } \begin{array}{l}
0.3 x_{1}+0.52 x_{2}+x_{3}=-0.01 \\
0.5 x_{1}+x_{2}+1.9 x_{3}=0.67 \\
0.1 x_{1}+0.3 x_{2}+0.5 x_{3}=-0.44
\end{array} \\
& \\
& x_{2}=\frac{\left|\begin{array}{rr|r|r|r|}
0.3 & -0.01 & 1 \\
0.5 & 0.67 & 1.9 \\
0.1 & -0.44 & 0.5
\end{array}\right|}{-0.0022}=\frac{0.0649}{-0.0022}=-29.5
\end{aligned}
$$

Cramer's Rule

The Elimination of Unknowns

- The basic strategy is to multiply the equations by constants so that one of the unknowns will be eliminated when the two equations are combined.
- The result is a single equation that can be solved for the remaining unknown.
- This value can then be substituted into either of the original equations to compute the other variable.

The Elimination of Unknowns

$$
a_{22} a_{11} x_{2}-a_{12} a_{21} x_{2}=b_{2} a_{11}-b_{1} a_{21}
$$

$x_{1}=\frac{a_{22} b_{1}-a_{12} b_{2}}{a_{11} a_{22}-a_{12} a_{21}} \stackrel{x_{2}}{\square}=\frac{a_{11} b_{2}-a_{21} b_{1}}{a_{11} a_{22}-a_{12} a_{21}}$

The Elimination of Unknowns

Ex., $3 x_{1}+2 x_{2}=18$

$$
-x_{1}+2 x_{2}=2
$$

$$
\begin{aligned}
& x_{1}=\frac{a_{22} b_{1}-a_{12} b_{2}}{a_{11} a_{22}-a_{12} a_{21}}=\frac{2(18)-2(2)}{3(2)-2(-1)}=4 \\
& x_{2}=\frac{a_{11} b_{2}-a_{21} b_{1}}{a_{11} a_{22}-a_{12} a_{21}}=\frac{3(2)-(-1) 18}{3(2)-2(-1)}=3
\end{aligned}
$$

Gauss Elimination

The procedure consisted of two steps:

1. The equations were manipulated to eliminate one of the unknowns from the equations. The result of this elimination step was that we had one equation with one unknown.
2. Consequently, this equation could be solved directly and the result back-substituted into one of the original equations to solve for the remaining unknown.

Gauss Elimination

Gauss Elimination

Ex.,

$$
\begin{aligned}
& 3 x_{1}-0.1 x_{2}-0.2 x_{3}=7.85 \\
& 0.1 x_{1}+7 x_{2}-0.3 x_{3}=-19.3 \\
& 0.3 x_{1}-0.2 x_{2}+10 x_{3}=71.4
\end{aligned}
$$

$$
\left[\begin{array}{ccc:c}
3 & -0.1 & -0.2 & 7.85 \\
0.1 & 7 & -0.3 & -19.3 \\
0.3 & -0.2 & 10 & 71.4
\end{array}\right]
$$

Gauss Elimination

$\left.\left[\begin{array}{ccc:c} & \text { Pivot } \\ (3) & -0.1 & -0.2 & 7.85 \\ 0.1) & 7 & -0.3 & -19.3 \\ 0.3 & -0.2 & 10 & 71.4\end{array}\right] \times 0.1 / 3\right\}$
$\left[\begin{array}{ccc:c}(3) & -0.1 & -0.2 & 7.85 \\ 0 & 7.00333 & -0.29333 & -19.5617 \\ (0.3) & -0.2 & 10 & 71.4\end{array}\right] \times 0.3 / 3$
Pivo $\left[\begin{array}{ccc:c}3 & -0.1 & -0.2 & 7.85 \\ 0 & 7.00333 & -0.29333 & -19.5617 \\ 0 & -0.19 & 10.02 & 70.615\end{array}\right] \times-0.19$

Gauss Elimination

$$
x_{3}=\frac{70.0843}{10.0120}=7.0000
$$

Gauss Elimination

$$
\left[\begin{array}{ccc:c}
3 & -0.1 & -0.2 & 7.85 \\
\hline 0 & 7.00333 & -0.29333 & -19.5617 \\
\hline 0 & 0 & 10.0120 & 70.0843
\end{array}\right]
$$

$7.00333 x_{2}-0.293333(7.0000)=-19.5617$

$$
x_{2}=\frac{-19.5617+0.293333(7.0000)}{7.00333}=-2.50000
$$

Gauss Elimination

$\left.\begin{array}{|ccc:c|}\hline 3 & -0.1 & -0.2 & 7.85 \\ \hline 0 & 7.00333 & -0.29333 & -19.5617 \\ 0 & 0 & 10.0120 & 70.0843\end{array}\right]$

$$
3 x_{1}-0.1(-2.50000)-0.2(7.0000)=7.85
$$

$$
x_{1}=\frac{7.85+0.1(-2.50000)+0.2(7.0000)}{3}=3.00000
$$

Drawbacks of Gauss Elimination

Dividing by zero (or close to zero)

- Solution: "Partial pivoting" switch rows and use the largest value as a pivot

Drawbacks of Gauss Elimination

Round-off errors
Important for more than 100 equations
You should always substitute your answers back into the original equations to check whether a substantial error has occurred.

Solution: scaling \& use more significant fraction figures

Drawbacks of Gauss Elimination

$$
\begin{aligned}
& \begin{array}{rlr}
\text { Ex., } 2 x_{1}+100,000 x_{2} & =100,000 \\
x_{1}+\quad x_{2} & =2
\end{array} \\
& {\left[\begin{array}{cc:c}
2 & 100000 & 100000 \\
1 & 1 & 2
\end{array}\right] \longmapsto\left[\begin{array}{cc:c}
2 & 100000 & 100000 \\
0 & -49999 & -49998
\end{array}\right]} \\
& x_{2}=\frac{-49998}{-49999}=0.99998 \cong 1 \\
& 2 \mathrm{x}_{1}+100,000 x \mathrm{x}=100,000 \Rightarrow \mathrm{x}_{1}=0 \mathbb{K}
\end{aligned}
$$

Drawbacks of Gauss Elimination

- Use more significant fraction figures

$$
\begin{aligned}
& {\left[\begin{array}{cc:c}
2 & 100000 & 100000 \\
1 & 1 & 2
\end{array}\right] \longmapsto\left[\begin{array}{cc:c}
2 & 100000 & 100000 \\
0 & -49999 & -49998
\end{array}\right]} \\
& \mathrm{x}_{2}=\frac{-49998}{-49999}=0.99998 \\
& 2 \mathrm{x}_{1}+100,000 x 0.99998=100,000 \quad \longleftrightarrow \mathrm{x}_{1}=1
\end{aligned}
$$

Drawbacks of Gauss Elimination

Use scaling that maximum coefficient in each row is 1

$$
\begin{aligned}
& {\left[\begin{array}{cc:c}
0.00002 & 1 & 1 \\
1 & 1 & 2
\end{array}\right] \stackrel{\text { Partial pivoting }}{\Longleftrightarrow}\left[\begin{array}{cc:c}
1 & 1 & 2 \\
0.00002 & 1 & 1
\end{array}\right]} \\
& \mathrm{x}_{2}=\frac{0.99996}{0.99998}=0.99998 \\
& \mathrm{x}_{1}=1.00002
\end{aligned}
$$

Drawbacks of Gauss Elimination

3. Singular systems $(\mathrm{D}=0)$
4. III conditioned systems

- III-conditioning is that a wide range of answers can approximately satisfy the equations.
- Because round-off errors can induce small changes in the coefficients, these artificial changes can lead to large solution errors for ill-conditioned systems.
- $\mathrm{D} \approx 0$ (scaling numbers in the matrix to be less than one)
- Solution: use more significant figures

Drawbacks of Gauss Elimination

Ex., $\quad x_{1}+2 x_{2}=10$

$$
1.1 x_{1}+2 x_{2}=10.4
$$

$$
\left[\begin{array}{cc:c}
1 & 2 & 10 \\
1.1 & 2 & 10.4
\end{array}\right] \longleftrightarrow\left[\begin{array}{cc:c}
1 & 2 & 10 \\
0 & -0.2 & -0.6
\end{array}\right]
$$

$$
x_{2}=\frac{-0.6}{-0.2}=3
$$

$$
\mathrm{x}_{1}+2 \times 3=10 \quad \Longleftrightarrow \mathrm{x}_{1}=4
$$

Drawbacks of Gauss Elimination

Replace 1.1 by 1.05

$$
\begin{aligned}
& {\left[\begin{array}{cc:c}
1 & 2 & 10 \\
1.05 & 2 & 10.4
\end{array}\right] \leadsto\left[\begin{array}{cc:c}
1 & 2 & 10 \\
0 & -0.1 & -0.1
\end{array}\right]} \\
& \mathrm{x}_{2}=\frac{-0.1}{-0.1}=1 \\
& \mathrm{x}_{1}+2 x \mathrm{l}=10 \quad \Longrightarrow \mathrm{x}_{1}=8
\end{aligned}
$$

Drawbacks of Gauss Elimination

$$
\mathrm{x}_{1}=4, \mathrm{x}_{2}=3
$$

Gauss Elimination

