
Week 7- Page 1ECP-622– Spring 2020

Variable partitions are similar to fixed partitions, but number
and sizes of partitions change dynamically.

Memory management by variable partitions

When a process is brought into main memory, it is allocated
exactly as much memory as it requires. After this memory is
deallocated, splitting and merging of partitions are possible.

Slide 1

In this technique also, a memory partition of enough size is reserved for each process from
its start to its termination. However, the partitions into which the memory is divided change
dynamically.

Slide 2

Process is assigned the exact memory size it needs. If this is taken from a previously larger
partition, the remainder of this partition can be used by some other process. Adjacent
partitions that become free can be merged into one larger partition. These variable
partitions enable avoiding the disadvantages of fixed partitions.

Week 7- Page 2ECP-622– Spring 2020

Memory management by variable partitions

5

Slide 3

In figure (a), the operating system only is running, reserving a memory partition for itself. In
figures (b),(c), and (d) processes 1,2, and 3 are assigned their memory requirements. In
figure (e) process 2 terminates, thus releasing the partition it held. When process 4 starts in

figure (f), it needs only 8M, thus the partition of size 14 M is split into 8M assigned to new
process, and 6M that remains free. Same occurs when process 5 starts.

Week 7- Page 1ECP-622– Spring 2020

Variable partitions are similar to fixed partitions, but number
and sizes of partitions change dynamically.

If several areas can be assigned to some new process, which
one to select? The answer is not obvious as in the case of fixed
partitions.

Memory management by variable partitions

When a process is brought into main memory, it is allocated
exactly as much memory as it requires. After this memory is
deallocated, splitting and merging of partitions are possible.

Slide 4

In fixed partitions, the answer to this question was to select the smallest, to minimize the
waste in memory. Here, no waste occurs as a result of internal fragmentation. So what is the
best selection?

Assigns new process memory from the smallest area with
enough free space.

o Best-fit algorithm

Memory management by variable partitions

Week 7- Page 3ECP-622– Spring 2020

Not always a good policy, as it usually results in many small
leftover holes that are not enough for any process, and are
thus effectively wasted (External fragmentation).

Slide 5

If we also take the memory requirements from the smallest partition, we call this the best-fit
selection.

Slide 6

This tends to minimize the remaining free areas. These remaining areas may be not enough
to run any process. Note that we still assume that a process needs to operate in one
undivided partition. After using best fit for some time, the free area in memory will be
scattered into small holes that are not enough to run processes. This phenomenon is called
external fragmentation (i.e. fragments occur outside of partitions).

o Worst-fit algorithm

Assigns new process memory from the smallest area with
enough free space.

o Best-fit algorithm

Memory management by variable partitions

Week 7- Page 3ECP-622– Spring 2020

Not always a good policy, as it usually results in many small
leftover holes that are not enough for any process, and are
thus effectively wasted (External fragmentation).

Assigns new process memory from the largest area with
enough free space.

No large holes are left for large processes to run.

Slide 7

If we select instead the largest partition, we call this the worst-fit algorithm. It should avoid
the disadvantage of best-fit.

Slide 8

However, a new problem arises. Since in worst-fit we systematically split large partitions, we
expect that no large partitions will be left after a while. Processes with large memory
requirements will not be able to run.

o First-fit algorithm

Memory management by variable partitions

Week 7- Page 4

Assigns new process memory from area with enough free space
and least address.

ECP-622– Spring 2020

Slide 9

Since selection of smallest or largest partitions will both lead to problems, it is better not to
base decision on size. The first-fit algorithm begins looking for a suitable partition from the
start of memory, and assigns the first partition it finds. Sometimes this will be small, and
sometimes it will be large, so disadvantages of best-fit and worst-fit will not persist.

o First-fit algorithm

o Next-fit algorithm

Similar to first-fit, but starts search after last assigned area
(circular first-fit).

Memory management by variable partitions

Week 7- Page 4

Assigns new process memory from area with enough free space
and least address.

ECP-622– Spring 2020

These result in faster operation and less memory waste than
best-fit and worst-fit.

Slide 10

A slightly different method is the next-fit algorithm. It also assigns the first partition it finds
irrespective of size. However, it does not begin the search from the start of memory each
time. Instead, it begins search after the last assigned area. This usually will speed up the
search, as in first-fit the start of memory will typically be fragmented, and suitable partitions
will be found at higher addresses. The name circular first-fit may be used since when search
reaches the end of memory, it returns back to the start.

Example: Starting from the shown
state, the following occurred in
order:

 Process A terminated.

 Process E starts requiring 100K.

 Process C terminated.

 Process F starts requiring 160K.

Where will each algorithm place E
and F?

70K

304K

200K

150K

100K

200K

OS

C

D

B

A

free

Memory management by variable partitions

Week 7- Page 5ECP-622– Spring 2020

Slide 11

Note here that the order of events is important as it will change the result.

Example: Starting from the shown
state, the following occurred in
order:

 Process A terminated.

 Process E starts requiring 100K.

 Process C terminated.

 Process F starts requiring 160K.

Where will each algorithm place E
and F?

70K

304K

200K

150K

100K

200K

OS

free

D

B

free

free

Memory management by variable partitions

Week 7- Page 5ECP-622– Spring 2020

Slide 12

Now we have free areas of sizes 200 K, 150 K, and 304 K.

Best-fit

 Process A terminated.

 Process E starts requiring 100K.

 Process C terminated.

 Process F starts requiring 160K.

Where will each algorithm place E
and F?

70K

304K

200K

150K

100K

200K

OS

free

D

B

free

Memory management by variable partitions

Week 7- Page 5ECP-622– Spring 2020

E

free

F

Worst-fit

 Process A terminated.

 Process E starts requiring 100K.

 Process C terminated.

 Process F starts requiring 160K.

Where will each algorithm place E
and F?

70K

304K

200K

150K

100K

200K

OS

free

D

B

free

Memory management by variable partitions

Week 7- Page 5ECP-622– Spring 2020

E

F

free

First-fit assuming that addresses
increase upwards

 Process A terminated.

 Process E starts requiring 100K.

 Process C terminated.

 Process F starts requiring 160K.

Where will each algorithm place E
and F?

70K

304K

200K

150K

100K

200K

OS

free

D

B

free

free

Memory management by variable partitions

Week 7- Page 5ECP-622– Spring 2020

E

F

Next-fit assuming that D was the
process last assigned

 Process A terminated.

 Process E starts requiring 100K.

 Process C terminated.

 Process F starts requiring 160K.

Where will each algorithm place E
and F?

70K

304K

200K

150K

100K

200K

OS

free

D

B

free

free

Memory management by variable partitions

Week 7- Page 5ECP-622– Spring 2020

E

F

free

How will the system keep track of variable partitions?

Memory management by variable partitions

ECP-622– Spring 2020 Week 8- Page 6

Slide 17

In fixed partitions, the system needs only to maintain a fixed table with start and end
addresses of partitions. When partitions vary dynamically, a more complex data structure is
needed.

How will the system keep track of variable partitions?

Two possible approaches:

o Bit Maps

Divide memory into small allocation units. Store the state of
each unit (free/ allocated) in one bit in a memory map.

The choice of the unit size is a critical decision.

Memory management by variable partitions

ECP-622– Spring 2020 Week 8- Page 6

Slide 18

Here, the system will maintain a map of memory indicating free and assigned areas. If this
map shows the status of each address (byte), its size will be too large, taking itself a large
portion of memory. Thus, map deals with larger units (blocks of addresses) to make its size
more compact. Process is assigned an integer number of these allocation units, as map does
not handle fractions of units. Unit should not be too large, as process may waste memory if
assigned a large unit not used completely.

Memory Management by Variable Partitions

Memory

Bit map

Linked list

Source: [Tanenbaum 15]

Memory management by variable partitions

Week 8- Page 7ECP-622– Spring 2020

Slide 19

Note here how memory is divided into units, with a bit in map corresponding to each unit.
Process A is assigned the first five units. This is reflected in map by five 1 bits. There is next
three free units shown in map by three zero bits,… etc. A search of a free partition with a
given size will be a search for a specific number of adjacent zero bits in map.

How will the system keep track of variable partitions?

Two possible approaches:

o Bit Maps

o Linked Lists

Divide memory into small allocation units. Store the state of
each unit (free/ allocated) in one bit in a memory map.

The choice of the unit size is a critical decision.

Maintain a linked list with a node for each memory area,
whether free or assigned. Update list whenever processes start
or terminate.

Memory management by variable partitions

ECP-622– Spring 2020 Week 8- Page 6

Slide 20

In this alternative method system uses a linked list with a node for every memory partition,
whether free or assigned. As partitions are created, split, and merged, the linked list is
updated to reflect these changes.

Memory Management by Variable Partitions

Memory

Bit map

Linked list

Source: [Tanenbaum 15]

Memory management by variable partitions

Week 8- Page 7ECP-622– Spring 2020

Slide 21

Linked list has a node for each area assigned to process (P) or free or hole (H). Node
indicates length of partition and where it starts. Note that units are not necessary for the
linked list method and used here for illustration only. If for example process B terminates,
the area it occupies will be merged with the preceding hole, forming a single hole of length
9.

o Indexed-Fit

Use a data structure (e.g. ordered binary tree) to store available
partition sizes. For each size, a pointer is used to access a list of
the available partitions.

o Segregated free lists

Use a separate list for free partitions within a given size range.

The previous algorithms do not scale well as search time
increases with memory size. Some algorithms provide better
search time

Memory management by variable partitions

Week 8- Page 8ECP-622– Spring 2020

Allocates memory partitions of size � with , where �

is the smallest partition size and � is the size of available
memory. A list is maintained for free partitions of each size � .

For a request for memory block of size s, system assigns a partition
of size � , where � � If necessary, system splits larger
partitions in halves.

Week 8- Page 9

Buddy Allocator System

ECP-622– Spring 2020

When a partition becomes free it can be merged with an adjacent
partition of the same size.

Slide 23

Buddy allocator method combines some advantages of fixed and variable partitions.
Possible partition sizes are limited to powers of 2. A separate list is maintained for free
partitions of each size of the finite possible ones. This will speed up the search for an area of
particular size.

Slide 24

Process is assigned partition with a size the nearest power of 2 to its requirements (some
internal fragmentation thus occurs). Partitions can be split in two, and two adjacent free
partitions of the same size can be merged (thus maintaining the power of 2 restrictions).

Slide 25

In this example, memory is first consisting of a single free partition of size 2 power 10.

Slide 26

Process A starts requiring 100 K. It will be assigned the nearest larger power of 2, which is 128 K.
This is obtained by successive splitting of partitions. Now memory consists of 128 K assigned to A,
and three free partitions of sizes 128, 256, and 512 K.

Slide 30

B releases its memory, but no merging occurs yet as sizes are different.

Slide 33

When C ends, merging occurs since two adjacent free partitions have the same size.

