
FreeRTOS Semaphores

FreeRTOS allows communication and synchronization between
tasks using semaphores. These are actually implemented using
queues.

ECP-622– Spring 2020 Week 7- Page 1

Slide 1

As all current operating systems, FreeRTOS allows tasks to use semaphores. Although these
semaphores’ behavior is the same as that we defined theoretically, they are internally
implemented using queues. You can look at the details on the FreeRTOS web site. What is
important here is to note that semaphores are treated in a manner completely different
from normal integer variables.

FreeRTOS Semaphores

FreeRTOS allows communication and synchronization between
tasks using semaphores. These are actually implemented using
queues.

API functions are available for binary semaphores, counting
semaphores and mutexes.

Week 7- Page 1ECP-622– Spring 2020

Slide 2

There are three types of semaphores which differ in the method of declaration and in typical
uses.

FreeRTOS Binary Semaphores

The function xSemaphoreCreateBinary(void)creates a binary
semaphore and returns a handle to this semaphore (or NULL if
creation fails).

semphr.h need to be included. Initial state of semaphore is
equivalent to a value of 0.

Week 7- Page 2ECP-622– Spring 2020

Slide 3

The binary semaphore - as its name implies- will only take values of 0 or 1. This type is
typically used for signaling applications. Recall that the x in the start of the function name
implies that it returns a word.

Slide 4

As it is mainly used for signaling, it is initially given a value of 0. Thus, it will block a task,
waiting for a signal from another task (i.e. by the equivalent of the up function).

FreeRTOS Binary Semaphores

The function xSemaphoreCreateBinary(void)creates a binary
semaphore and returns a handle to this semaphore (or NULL if
creation fails).

semphr.h need to be included. Initial state of semaphore is
equivalent to a value of 0.

The down () and up () functions are executed by the API functions:

xSemaphoreTake (Semaphore_handle, Ticks_to_wait)

xSemaphoreGive (Semaphore_handle)

Week 7- Page 2ECP-622– Spring 2020

Slide 5

The functions xSemaphoreTake (equivalent to down) and xSemaphoreGive (equivalent to
up) are the same for the three types of semaphores. Contrary to the theoretical definition
of down, we can specify a maximum duration for blocking by xSemaphoreTake. After this
duration, the functions times out and returns an error (0 value). For indefinite waiting, use
portMAX_DELAY.

FreeRTOS Counting Semaphores

The function xSemaphoreCreateCounting()creates a counting
semaphore and returns a handle to this semaphore (or NULL if
creation fails).

Week 7- Page 3ECP-622– Spring 2020

Slide 6

Counting semaphores are used in applications where semaphore can take positive integer
values greater than one, as for example in the reader/writer problem.

FreeRTOS Counting Semaphores

The function xSemaphoreCreateCounting()creates a counting
semaphore and returns a handle to this semaphore (or NULL if
creation fails).

#include “semphr.h"

………………

………………

SemaphoreHandle_t sh;

…………….

…………….

sh=xSemaphoreCreateCounting(10,1);

Maximum count Initial count

Week 7- Page 3ECP-622– Spring 2020

Slide 7

When creating a counting semaphore, we give it an arbitrary initial value as this will differ
from one application to the other. One other difference from the theoretical definition is
that we specify a maximum value that the semaphore cannot exceed. Note that the shown
declaration of semaphore handle type is common to all types of semaphores.

The functions xSemaphoreTake() and xSemaphoreGive() are
used also for down and up operations on counting semaphores.

These functions return pdTRUE (=1) if successful, and pdFALSE

(=0) otherwise, e.g.:

o Specified tick counts expire without taking the semaphore.

FreeRTOS Counting Semaphores

Week 7- Page 4ECP-622– Spring 2020

The functions xSemaphoreTake() and xSemaphoreGive() are
used also for down and up operations on counting semaphores.

These functions return pdTRUE (=1) if successful, and pdFALSE

(=0) otherwise, e.g.:

o Specified tick counts expire without taking the semaphore.

o Giving a counting semaphore will cause it to exceed
maximum count.

FreeRTOS Counting Semaphores

Week 7- Page 4ECP-622– Spring 2020

o Giving a binary semaphore that’s already given (=1).

Slide 10

Thus, if we try to perform the equivalent of an up operation that will cause the counting
semaphore to exceed the specified maximum value, the operation fails and an error is
returned. Note that the same occurs if we try to increase a binary semaphore which is
already equal to 1.

FreeRTOS Mutexes

A mutex is a semaphore used for mutual exclusion. It differs
from a binary semaphore in the following:

Week 7- Page 5ECP-622– Spring 2020

o Initial state of semaphore is equivalent to a value of 1.

Slide 11

The third type of semaphores, called the mutex is specifically intended for mutual exclusion.
Thus, its normal initial value is 1 instead of 0 as binary semaphores.

FreeRTOS Mutexes

A mutex is a semaphore used for mutual exclusion. It differs
from a binary semaphore in the following:

o Mutex implements priority inheritance: priority of task
holding the mutex is temporarily raised to that of highest
priority task attempting to take the same mutex.

o Initial state of semaphore is equivalent to a value of 1.

Week 7- Page 5ECP-622– Spring 2020

Slide 12

As we have seen before, priority inheritance is an essential technique for real-time kernels.
Priority inheritance does not apply for binary or counting semaphores.

FreeRTOS Mutexes

A mutex is a semaphore used for mutual exclusion. It differs
from a binary semaphore in the following:

o A task that takes a mutex will always give it back.

o Mutex implements priority inheritance: priority of task
holding the mutex is temporarily raised to that of highest
priority task attempting to take the same mutex.

o Initial state of semaphore is equivalent to a value of 1.

Week 7- Page 5ECP-622– Spring 2020

Slide 13

Otherwise, an error will occur. So we should never use a mutex take without a mutex give.

FreeRTOS Mutexes

A mutex is a semaphore used for mutual exclusion. It differs
from a binary semaphore in the following:

o A task that takes a mutex will always give it back.

o Mutex implements priority inheritance: priority of task
holding the mutex is temporarily raised to that of highest
priority task attempting to take the same mutex.

It is created using the function xSemaphoreCreateMutex(void)

and manipulated by the same functions xSemaphoreTake()

and xSemaphoreGive().

o Initial state of semaphore is equivalent to a value of 1.

Week 7- Page 5ECP-622– Spring 2020

