
FreeRTOS Queues

FreeRTOS allows communication and synchronization between
tasks using queues. This is similar to message passing with some
limitations.

The queue is not owned by a particular task. Any number of
tasks can write to or read from any queue. It normally acts as a
FIFO queue.

The queue will hold a finite number of fixed size data items.
Length and item size are specified during creation of the queue.

ECP-622– Spring 2020 Week 6- Page 1

Slide 1

FreeRTOS allows information exchange and synchronization among tasks using queues.
These are similar to mailboxes, but with limited options as a result of small system size.

Slide 2

Once queue is created, any task can send data to, or receive data from this queue. With few
exceptions, queue operates in first-in first-out mode without message priorities.

The function xQueueCreate() creates a queue and returns a
handle to this queue (or NULL if creation fails).

…………….

…………….

qh=xQueueCreate(10 ,1);

#include "queue.h"

………………

………………

QueueHandle_t qh

Length of queue Size of item in bytes

FreeRTOS Queues

ECP-622– Spring 2020 Week 6- Page 2

Slide 4

We need to include queue.h to use the following functions. A handle to a queue is a word
used to refer to the queue later. The function xQueueCreate() takes two arguments: first is
the number of items the queue can hold, and the second is the size of each item. The type
QueueHandle_t is actually a word, but given a specific name to improve program readability.

The function xQueueSend() is used to write an item at the back of
the queue. If queue is full, the calling task will be blocked until a place
in queue is empty. Calling task may time out and stop waiting for an
empty place.

xQueueSend (qh1,&x ,1000);

Handle of the queue
Pointer to
variable with
the value to
be written.

Wait for 1000
ticks then time
out.

Function returns either pdPASS (=1) or errQUEUE_FULL (=0).

FreeRTOS Queues

ECP-622– Spring 2020 Week 6- Page 3

The function xQueueReceive() is used to read an item from the
front of the queue (and remove it from queue). If queue is empty, the
calling task will be blocked until an item is sent to queue. Timing out
is also possible.

xQueueReceieve (qh1,&x ,1000);

Handle of the
queue

Pointer to
variable in
which value is
buffered.

Wait for 1000
ticks then time
out.

Function returns either pdPASS (=1) or errQUEUE_EMPTY (=0).

FreeRTOS Queues

ECP-622– Spring 2020 Week 6- Page 4

Source: FreeRTOS.org

FreeRTOS Queues

ECP-622– Spring 2020 Week 6- Page 5

Slide 7

This animation shows Task A sending three items to the FIFO queue using
xQueueSendToBack. xQueueSendToBack acts exactly as xQueueSend. Then, Task B receives
the three items by executing xQueueReceive three times.

For indefinite waiting in send or receive function, timeout is set
to portMAX_DELAY.

Other functions are available for queue handling. For example,
xQueueSendToFront()writes an item at the front of the queue,
xQueuePeek() reads the value at the front of the queue
without removing it, and uxQueueMessageWaiting() returns
the number of items currently in the queue.

If multiple tasks are waiting for the same queue, the one
unblocked first will be the task with higher priority or task that
waited longer.

FreeRTOS Queues

ECP-622– Spring 2020 Week 6- Page 6

Slide 8

This option allows waiting with no timing-out, but this should be avoided in real-time tasks.

Slide 10

xQueueSendToFront is the only way to give priority to a particular message. xQueueReceive
removes item from queue after reading but xQueuePeek leave it there. Number of items
currently in queue can be checked at any time by the indicated function.

