
POSIX Message Queues

POSIX contains the following functions for communication
through message queues.

Mq_open ()

establishes the connection between a process and a message
queue and returns a queue descriptor. Arguments include a
name given to the queue and flags indicating different options.

Options include:
 Open queue for send and/or receive.
 If queue does not exist, create new one with specified max

message size and queue length.
 Use non-blocking send and receive

Week 6- Page 1ECP-622– Spring 2020

Slide 1

As an example of message passing functions used in existing operating systems, we consider
these functions in POSIX standard. We will not cover all the syntax details here, as these can
be found easily on-line.

Slide 2

The function mq_open (which stands for message queue open) establishes connection with
an existing or new message queue. It returns a descriptor used to refer to the queue in other
functions. Note that there is no distinction between a one-to-one queue and a mailbox, as
both are used in the same way.

Slide 3

Queue can be open for sending, receiving, or both. If queue does not exist, a new one is
created, in which case maximum message size and queue length are specified or left to a
default value. Process selects to block waiting for a received message or not. Same applies
when sending to a full queue.

Week 6- Page 2ECP-622– Spring 2020

Slide 4

In this example, mq_open is used to create a new queue with name “my_queue” for read
and write. The integer variable md becomes the queue descriptor. If time permits, we will
consider complete examples on Linux later.

Mq_send ()

Adds a message of specified size and priority to an opened
queue. If queue is full it either blocks waiting or returns an error.
A version of function allows timing out for more predictable
timing.

No function is specified for synchronous send.

POSIX Message Queues

Week 6- Page 3ECP-622– Spring 2020

Slide 5

The function mq_send sends a message to an opened queue. In real-time version of POSIX,
it is possible to wait for a full queue for a particular time before timing out and returning an
error. POSIX does not have a send function with acknowledgment. If this is needed, user
has to build it using normal functions (i.e. send ack message after receiving, and receiving an
ack message after sending).

Mq_send ()

Adds a message of specified size and priority to an opened
queue. If queue is full it either blocks waiting or returns an error.
A version of function allows timing out for more predictable
timing.

No function is specified for synchronous send.

Mq_receive ()

Reads the oldest of the highest priority messages in the opened
queue into a local buffer in task. This message is removed from
the queue.

POSIX Message Queues

Week 6- Page 3ECP-622– Spring 2020

Slide 6

Week 6- Page 4ECP-622– Spring 2020

Slide 7

This is an example of real syntax for creating a queue for reading strings of 20 characters
each. Queue can hold up to 5 strings. Mq_receive is then used to receive a string into a
local variable.

If more than one task are waiting for an empty queue, the
highest priority task will receive the first arriving message.

Handling of priority inversion is not specified. Implementations
should consider this potential problem.

If queue is empty it either blocks waiting (with possible time-
out) or just returns an error.

POSIX Message Queues

Week 6- Page 5ECP-622– Spring 2020

Slide 8

Again, in real-time systems, limiting the waiting time is necessary for predictability.

Slide 10

Use of messages may result in another form of priority inversion. This occurs specifically
when a high priority process is blocked waiting for a message from a low priority process. To
prevent uncontrollable long delays, sender should inherit the high priority of the receiver.
Real-time POSIX standard indicates that this should be done, but does not specify
implementation details.

