Answers to Review Problems

[1] a) Major cycle length will be 60 ms . Frame length f should satisfy $5 \leq f \leq 10$ and divide 60 , which leaves the values 5,6 , and 10 .

The condition $2 f-\operatorname{gcd}\left(f, T_{i}\right) \leq d_{i}$ for all tasks will be satisfied by $\mathrm{f}=5$ and 6 only. Taking $\mathrm{f}=5$, we can construct schedule as shown below:

b) The condition
$2 \times 5-\operatorname{gcd}(5,15)=5 \leq 10$
is still valid. However, the second execution of C in the above schedule will miss the new deadline. Thus schedule need to be modified as follows:

N.B. If we choose $f=6$, we can construct a schedule in part (a) as shown below

However, in part (b) we cannot modify the schedule as the complete frame for both A and C in the first period will be the first frame, and they cannot run together in the same frame.
[2] The major cycle length is 180 ms .
a) $\mathrm{f}=10$ is larger than all execution times and less than all deadlines, and it divides
180. Further:
$2 x 10-\operatorname{gcd}(10,30)=10 \leq 30$
$2 x 10-\operatorname{gcd}(10,18)=18 \leq 18$
$2 x 10-\operatorname{gcd}(10,20)=10 \leq 20$
b) A possible execution schedule is shown below:

$0-10$	B,C	$90-100$	A,B
$10-20$	A	$100-110$	C
$20-30$	B,C	$110-120$	B
$30-40$	A	$120-130$	C
$40-50$	B,C	$130-140$	B,A
$50-60$		$140-150$	C
$60-70$	B,C	$150-160$	B,A
$70-80$	A	$160-170$	C
$80-90$	B,C	$170-180$	B

c) The time $t=200$ will be at the start of third frame in the second cycle from 180 to 360 . System can insert the task in the first 4 ms in which the CPU is idle, which would be from 216 to 220 , which the earliest time at which can be executed without perturbing the periodic tasks.
[3] a) Using Liu and Layland theorems, we first observe that $\sum u_{i}=0.8071$, which is more than the threshold of the sufficient condition for three tasks. Using the critical instant theorem:

Thus, third task has 30 ms of idle CPU time before its deadline. Since it needs only 25 ms of execution, thus tasks are RM schedulable.
b) For the condition $\sum u_{i} \leq 1$ to remain satisfied, task of third period can be reduced to 45.46 ms .
c) If the first task remains of second priority and its execution time increases to 16 ms , third task would miss its deadline. Thus first task, and since it is a soft real-time task, would be given the least priority. If its execution time increases to 16 , it will miss its deadline (this occurs with low probability) while the other two hard real-time tasks will not miss their deadlines.
[4] a) Again using the critical instance theorem, the tasks are RM schedulable.

b) Since $\sum u_{i}=0.8964 \leq 1$, the tasks are EDF schedulable,
c) The CPU utilization of the three tasks are $0.171,0.325$. and 0.4 . Arranging the utilizations of all tasks in non-decreasing order:
$0.71,0.55,0.47,0.4,0.325 .0 .21,0.171,0.16$
Then applying the first-fit algorithm:

Processor 1 0.71, 0.21
Processor 2 0.55, 0.4,
Processor 3 0.47, 0.325, 0.171
Processor 40.16

Thus, the minimum number of required processors is 4 .
[5] a) Priority order will be A-B-C
$R_{A}=4 \leq 15$
$R_{B}=5+\left\lceil\frac{R_{B}}{15}\right\rceil \times 4 \quad$ which converges at $R_{B}=9 \leq 20$
$R_{C}=10+\left\lceil\frac{R_{C}}{15}\right\rceil \times 4+\left\lceil\frac{R_{C}}{20}\right\rceil \times 5 \quad$ which converges at $R_{C}=28 \leq 30$
Thus tasks will always meet their deadlines.
b)
$R_{A}=4+4=8 \leq 15$
$R_{B}=5+4+\left\lceil\frac{R_{B}}{15}\right\rceil \times 4 \quad$ which converges at $R_{B}=13 \leq 20$
$R_{C}=10+\left\lceil\frac{R_{C}}{15}\right\rceil \times 4+\left\lceil\frac{R_{C}}{20}\right\rceil \times 5$ which converges at $R_{C}=28 \leq 30$

Thus tasks will still meet their deadlines.
c) Worst-case response times will be the same, and thus third task will miss its deadline in the worst case.
d) Priority order will be A-C-B
$R_{A}=4 \leq 15$
$R_{C}=10+\left\lceil\frac{R_{C}}{15}\right\rceil \times 4 \quad$ which converges at $R_{C}=14 \leq 20$
$R_{B}=5+\left\lceil\frac{R_{B}}{15}\right\rceil \times 4+\left\lceil\frac{R_{B}}{30}\right\rceil \times 10 \quad$ which converges at $R_{B}=23 \leq 24$
Thus, using dead-line monotonic scheduling deadlines will not be missed.

[6]

a) 3
b) 3
c) zero
d)

Process 1 operates $\mathrm{m}=2$, print $\mathrm{A}, \mathrm{n}=1$
Process 2 operates $\mathrm{m}=2$, print BC, $\mathrm{n}=1$
Process 2 operates $\mathrm{m}=2$, print $\mathrm{B}, \mathrm{n}=0$ and pre-empted
Process 1 operates $\mathrm{m}=1$, print $\mathrm{A}, \mathrm{n}=1$
Process 3 operates $m=1$, print $D, n=0$
Process 2 operates again $\mathrm{m}=1$, print $\mathrm{C}, \mathrm{n}=1$
Process 1 operates $m=0$, print A, $n=2$
Process 2 operates $\mathrm{m}=0$, print BC, $\mathrm{n}=2$
Process 3 operates $\mathrm{m}=0$, print $\mathrm{D}, \mathrm{n}=1$
Process 3 operates $m=0$, print A, $n=0$
Thus, sequence is possible.
[7] We use a semaphore m initially equal to zero

Thread 1	Thread 2	Thread n	Required Thre
up (m);	up (m);	up (m);	down (m); down (m);
			down (m); // n times // continue

Note that there is no need to use more than one semaphore.
[8] a) Using two semaphores m and n initially equal to zero

Process P1	Process P2	Process P3
$\ldots .$.	\ldots.	\ldots.
for $(\mathrm{i}=0 ; \mathrm{i}<50 ; \mathrm{i}++)$	for $(\mathrm{j}=0 ; \mathrm{j}<50 ; \mathrm{j}++)$	for $(\mathrm{k}=0 ; \mathrm{k}<50 ; \mathrm{k}++)$
$\{\mathrm{A}[\mathrm{i}]=\mathrm{fn} 1(\mathrm{i}) ;$	$\{\mathrm{B}[\mathrm{j}]=\mathrm{fn} 2(\mathrm{j}) ;$	$\{$ down $(\mathrm{m}) ;$ down $(\mathrm{n}) ;$
$\mathrm{up}(\mathrm{m}) ;\}$	$\mathrm{up}(\mathrm{n}) ;\}$	$\mathrm{C}[\mathrm{k}]=\mathrm{A}[\mathrm{k}]+\mathrm{B}[\mathrm{k}] ;\}$
$\ldots \ldots$	$\ldots .$.	$\ldots .$.

b) No, if we use m only

Process P1	Process P2	Process P3
$\ldots .$.	$\ldots .$.	$\ldots .$.
for $(\mathrm{i}=0 ; \mathrm{i}<50 ; \mathrm{i}++)$	for $(\mathrm{j}=0 ; \mathrm{j}<50 ; \mathrm{j}++)$	for $(\mathrm{k}=0 ; \mathrm{k}<50 ; \mathrm{k}++)$
$\{\mathrm{A}[\mathrm{i}]=\mathrm{fn} 1(\mathrm{i}) ;$	$\{\mathrm{B}[\mathrm{j}]=\mathrm{fn} 2(\mathrm{j}) ;$	$\{$ down $(\mathrm{m}) ;$ down $(\mathrm{m}) ;$
$\mathrm{up}(\mathrm{m}) ;\}$	$\mathrm{up}(\mathrm{m}) ;\}$	C $[\mathrm{k}]=\mathrm{A}[\mathrm{k}]+\mathrm{B}[\mathrm{k}] ;\}$
$\ldots .$.	$\ldots .$.	\ldots.

P3 may operate after two iterations of P1 while P2 did not operate.
c) Using two semaphores m and n initially equal to zero

Process P1	Process P2	Process P3
$\text { for }(i=0 ; i<50 ; i++)$	$\text { for }(j=0 ; j<50 ; j++)$	down (m); down(n);
$\mathrm{A}[\mathrm{i}]=\mathrm{fn} 1(\mathrm{i})$;	$\mathrm{B}[\mathrm{j}]=\mathrm{fn} 2(\mathrm{j})$;	for ($\mathrm{k}=0 ; \mathrm{k}<50 ; \mathrm{k}++$)
up(m);	up(m);	$\mathrm{C}[\mathrm{k}]=\mathrm{A}[\mathrm{k}]+\mathrm{B}[\mathrm{k}]$;

i.e up() and down () operations are out of the loops.

