
Another technique for information exchange and synchronization of tasks is the
method of message passing. It is used in all types of operating systems. One of its
advantages is that it can be used even if tasks run on different computers as in
distributed systems. Note that the use of a semaphore assumes that all tasks have
access to some memory location where semaphore is stored.

1

Two basic functions need to be provided by the system. The “send” function sends a
message to another destination task. System takes a copy of message contents and
put it in the memory space of the destination. The “receive” function requests the
system to bring a message from some source. We will consider examples of real
syntax later.

2

We next consider the many options that can be used in implementing the above two
functions. According to size and complexity of operating system, it provides some
subset of these options.

3

What can be the contents of message? Ideally, task can put any of its local variables
in a message and sends it to another task. However, typically the same send function
is used to send any data. From the system point of view, a sequence of bytes is sent
regardless of its meaning. Fixed length messages simplify design (size of buffers, etc.)
but longer messages may need to be segmented and shorter messages will need to
be padded with extra bytes.

4

How to specify source and destination? In direct addressing, the task id is used to
specify them. This allows only one task to exchange data with only one other task,
and these id’s should be known and fixed in the task codes.

5

To allow receiving a message from a number of possible sources, and send a message
that can be received by several processes, the idea of mailbox is used. The mailbox is
a buffer of messages that a task can ask the system to create. Then, any number of
tasks can send messages to the mailbox, and any number of tasks can read messages
from the mailbox. This is useful, for example for a server task that can receive a
service request from an arbitrary task at any time.

6

System will need to maintain a queue at a task or mailbox to hold messages sent but
not yet received. To avoid unbounded growth of this queue, its maximum length
need to be specified at creation.

7

Alternatively, task may attempt to receive a message that was not yet sent. Two
options exist: it can be blocked waiting for the message to arrive, or it may
immediately return an error.

8

As an example, we consider again the problem of mutual exclusion solved before
using semaphores.

9

Since we have communication among many tasks, we need a mailbox. To access
resource, task waits to receive a message from the mailbox. After ending access, it
returns the message to the mailbox. To work correctly, mailbox should be initialized
with just one message placed in it.

10

As another example we consider again the problem of reader and writer with a
bounded buffer.

11

Before reading, reader waits for a message from writer indicating that one place in
buffer was filled. After removing an item it sends a message to writer indicating that
a place is emptied. Note that here we use direct addressing since communication is
one-to-one.

12

As for the writer, it waits for a message indicating that a place is empty before
writing. After writing it notifies the reader by a message. To work correctly we must
initialize the operation by sending n messages with code ‘empty’ to the writer
(assuming buffer is initially empty). As an exercise, consider how this will be modified
with indirect addressing in case of many writers/many readers.

13

The receiver may be blocked, what about the sender? In asynchronous send option,
sender just sends the message and do not wait for any thing.

14

In case messages may be lost (e.g. if sent over a network) it may be necessary for the
sender to be blocked waiting for an acknowledgment from the receiver. In this
synchronous send mode, ideas similar to those used in network data link layer can be
used. For example what if message arrives but the acknowledgment itself was lost?

15

In this diagram, vertical arrows indicate time axis. Here task A sent a message in
synchronous mode. Task B received the message after a while and sent the
acknowledgment that unblocks A when received.

16

Here, B attempted to receive before A sent the message and hence is blocked. When
message from A arrives, B receives it immediately and acknowledges it.

17

What if sender tries to send to a full queue of messages? It either blocks waiting for a
place or immediately returns an error.

18

What if a task executes a receive operation with several pending messages. It may
receive the first one sent, or else it receives the one with highest priority. Messages
thus can have priority level normally related to the priority of tasks exchanging them.

19

All the above applies to all types of operating systems. In RTOS, the difference is that
the time of send and receive operations are critical to have a predictable worst-case
execution time for tasks.

20

For example, the delay of receiving a message will be a queuing delay with a
maximum value depending on how many messages may be pending in the queue.
Also, in case of synchronous send, maximum delay occurs if an acknowledgment is
not received and send is reattempted for several times.

21

