STR 665 RISK MANAGEMENT

LECTURE 3: THE ANALYTICAL HIERARCHY PROCESS (AHP)

ANNOUNCEMENT

• Project on website

INTRODUCTION

 In its general form the AHP is a nonlinear framework for carrying out both deductive and inductive thinking without use of the syllogism by taking several factors into consideration simultaneously and allowing for dependence and for feedback, and making numerical trade-offs to arrive at a synthesis or conclusion.

STEPS OF THE AHP

- (1) Develop a model for the decision
- (2) Derive priorities (weights) for the criteria
- (3) Derive local priorities (preferences) for the alternatives
- (4) Derive Overall Priorities (Model Synthesis)
- (5) Perform Sensitivity analysis
- (6) Making a Final Decision

1. Developing a Model

Break down the decision into a hierarchy of

- 1. goals,
- 2. criteria, and
- 3. alternatives.

1. Developing a Model

1. Developing a Model

By structuring the problem in this way it is possible to better

understand the decision to be achieved, the criteria to be used and the

alternatives to be evaluated.

2. DERIVING PRIORITIES (WEIGHTS) FOR THE CRITERIA

derive by pairwise comparisons the relative priority of each criterion with respect to each of the others using a numerical scale for comparison developed by Saaty (2012)

Intensity of Importance	Definition	Explanation
1	Equal Importance	Two activities contribute equally to the objective
2	Weak or slight	1 2 3
3	Moderate importance	Experience and judgement slightly favour one activity over another
4	Moderate plus	•
5	Strong importance	Experience and judgement strongly favour one activity over another
6	Strong plus	
7	Very strong or demonstrated importance	An activity is favoured very strongly over another; its dominance demonstrated in practice
8	Very, very strong	
9	Extreme importance	The evidence favouring one activity over another is of the highest possible order of affirmation
Reciprocals of above	If activity <i>i</i> has one of the above non-zero numbers assigned to it when compared with activity <i>j</i> , then <i>j</i> has the reciprocal value when compared with <i>i</i>	A reasonable assumption
1.1-1.9	If the activities are very	May be difficult to assign the best value but

2. DERIVING PRIORITIES (WEIGHTS) FOR THE CRITERIA

Not all criteria are equally important in a given time

 → derive by pairwise comparisons the relative priority of each criterion with respect to each of the others using a numerical scale for comparison developed by Saaty

2. DERIVING PRIORITIES (WEIGHTS) FOR THE CRITERIA

Buying a car	Cost	Comfort	Safety
Cost			
Comfort			
Safety			

2. DERIVING PRIORITIES (WEIGHTS) FOR THE CRITERIA

• Pairwise comparison matrix with judgments

Buying a car	Cost	Comfort	Safety
Cost	1	7	3
Comfort	1/7	1	1/3
Safety	1/3	3	1

(3) DERIVE LOCAL PRIORITIES (PREFERENCES) FOR THE ALTERNATIVES

CALCULATE THE OVERALL PRIORITIES OR WEIGHTS

• Using the approximate method:

- 1. Normalize the comparison matrix (add the values in each column)
- 2. divide each cell by the total of the column
- 3. obtain the overall or final priorities by simply calculating the average value of each row

	Buying a car	Cost	Comfort	Safety
	Cost	1	7	3
	Comfort	1/7	1	1/3
	Safety	1/3	3	1
	-			
	Buying a car	Cost	Comfort	Safety
. Add values in each	Cost	1.000	7.000	3.000
column	Comfort	0.143	1.000	0.333
	Safety	0.333	3.000	1.000
	Sum	1.476	11.000	4.333

2. divide each cell by the total of the column

Buying a car	Cost	Comfort	Safety
Cost	0.677	0.636	0.692
Comfort	0.097	0.091	0.077
Safety	0.226	0.273	0.231

3. calculate the
average value of each
row

Buying a car	Cost	Comfort	Safety	Priority
Cost	0.677	0.636	0.692	0.669
Comfort	0.097	0.091	0.077	0.088
Safety	0.226	0.273	0.231	0.243

3. Measuring Consistency

 In a comparison matrix criteria, if we provide a value of 2 to the first criterion over the second and a assign a value of 3 to the second criterion with respect to the third one,

What is the value of preference of the first criterion with respect to the third one?

• Some inconsistency is expected and allowed in AHP analysis.

CONSISTENCY INDEX

- Since the numeric values are derived from the subjective preferences of individuals, it is impossible to avoid some inconsistencies in the final matrix of judgments.
- The question is how much inconsistency is acceptable ?
- AHP calculates a consistency ratio (CR) comparing the consistency index (CI) of the matrix in question (the one with our judgments) versus the consistency index of a random-like matrix (RI).

CR = CI/RI

• RI is the average CI of 500 randomly filled in matrices.

CONSISTENCY INDEX

n	3	4	5	6
RI	0.58	0.9	1.12	1.24

- A consistency ratio (CR) of 0.10 or less is acceptable to continue the AHP analysis.
- If the consistency ratio is greater than 0.10, it is necessary to revise the judgments to locate the cause of the inconsistency and correct it.

$\mathsf{CALCULATING}\ \mathsf{CI}$

- 1. For matrix showing the judgment comparisons and derived priorities
- 2. Use the priorities as **factors (weights)** for each column

Buying a car	Cost	Comfort	Safety
Criteria Weights ->	0.669	0.088	0.243
Cost	1.000	7.000	3.000
Comfort	0.143	1.000	0.333
Safety	0.333	3.000	1.000

- 1. For matrix showing the *judgment comparisons* and *derived priorities*
- 2. Use the priorities as **factors (weights)** for each column
- 3. Multiply each value in the first column of the comparison matrix by the first criterion priority (weighted columns)

Buying a car	Cost	Comfort	Safety
Cost	0.669	0.617	0.729
Comfort	0.096	0.088	0.081
Safety	0.223	0.265	0.243

- 1. For matrix showing the *judgment comparisons* and *derived priorities*
- 2. Use the priorities as factors (weights) for each column
- 3. Multiply each value in the first column of the comparison matrix by the first criterion priority (weighted columns)
- 4. Add the values in each row to obtain a set of values called **weighted sum**

Buying a car	Cost	Comfort	Safety	Weighted sum
Cost	0.669	0.617	0.729	2.015
Comfort	0.096	0.088	0.081	0.265
Safety	0.223	0.265	0.243	0.731

- 1. For matrix showing the *judgment comparisons* and *derived priorities*
- 2. Use the priorities as factors (weights) for each column
- 3. Multiply each value in the first column of the comparison matrix by the first criterion priority (weighted columns)
- 4. Add the values in each row to obtain a set of values called weighted sum
- 5. Divide the elements of the *weighted sum* vector by the *corresponding priority* of each criterion

Weighted sum	Priority	
2.015/	0.669 =	3.014
0.265/	0.088 =	3.002
0.731/	0.243 =	3.005

- 1. For matrix showing the *judgment comparisons* and *derived priorities*
- 2. Use the priorities as factors (weights) for each column
- 3. Multiply each value in the first column of the comparison matrix by the first criterion priority (weighted columns)
- 4. Add the values in each row to obtain a set of values called weighted sum
- 5. Divide the elements of the *weighted sum* vector by the *corresponding priority* of each criterion
- 6. Calculate the average of the values from the previous step; this value is called ηmax.

Weighted sum	Priority	
2.015/	0.669 =	3.014
0.265/	0.088 =	3.002
0.731/	0.243 =	3.005
_	Total	9.021
2	Divide Total by 3 to obtain Lambda _{max} =	= 3.007 STR 665- Fall 201

- 1. For matrix showing the *judgment comparisons* and *derived priorities*
- 2. Use the priorities as factors (weights) for each column
- 3. Multiply each value in the first column of the comparison matrix by the first criterion priority (weighted columns)
- 4. Add the values in each row to obtain a set of values called weighted sum
- 5. Divide the elements of the *weighted sum* vector by the *corresponding priority* of each criterion
- 6. Calculate the average of the values from the previous step; this value is called Nmax.
- 7. calculate the consistency index (CI)

C.I. =
$$(\lambda_{\max} - n)/(n-1)$$

- 1. For matrix showing the *judgment comparisons* and *derived priorities*
- 2. Use the priorities as factors (weights) for each column
- 3. Multiply each value in the first column of the comparison matrix by the first criterion priority (weighted columns)
- 4. Add the values in each row to obtain a set of values called weighted sum
- 5. Divide the elements of the *weighted sum* vector by the *corresponding priority* of each criterion
- 6. Calculate the average of the values from the previous step; this value is called Nmax.
- 7. calculate the consistency index (CI)

C.I. =
$$(\lambda_{\max} - n)/(n-1)$$

- 1. For matrix showing the *judgment comparisons* and *derived priorities*
- 2. Use the priorities as factors (weights) for each column
- 3. Multiply each value in the first column of the comparison matrix by the first criterion priority (weighted columns)
- 4. Add the values in each row to obtain a set of values called weighted sum
- 5. Divide the elements of the *weighted sum* vector by the *corresponding priority* of each criterion
- 6. Calculate the average of the values from the previous step; this value is called Nmax.
- 7. calculate the consistency index (CI)

C.I. =
$$(\lambda_{\max} - n)/(n-1)$$

$$CI = (\lambda_{max} - n)/(n - 1) = (3.007 - 3)/(3 - 1) = 0.004$$

- 1. For matrix showing the *judgment comparisons* and *derived priorities*
- 2. Use the priorities as factors (weights) for each column
- 3. Multiply each value in the first column of the comparison matrix by the first criterion priority (weighted columns)
- 4. Add the values in each row to obtain a set of values called weighted sum
- 5. Divide the elements of the *weighted sum* vector by the *corresponding priority* of each criterion
- 6. Calculate the average of the values from the previous step; this value is called Nmax.
- 7. calculate the consistency index (CI)
- 8. Calculate the consistency ratio,

CR = CI/RI

CR =	= CI/RI	= 0004/0.58	= 0.006
------	---------	-------------	---------

n	3	4	5	6	
RI	0.58	0.9	1.12	1.24 STR 6	65- Fall 2019

4. DERIVING LOCAL PRIORITIES (PREFERENCES) FOR THE ALTERNATIVES

• we need to determine the priorities of the alternatives with respect to each of the criteria.

COMPARISON QUESTION 1: WITH RESPECT TO THE COST CRITERION, WHICH ALTERNATIVE IS PREFERABLE: CAR 1 OR CAR 2?

Cost	Car 1	Car 2
Car 1	1.000	7.000
Car 2	0.143	1.000
Sum	1.143	8.000

Cost	Car 1	Car 2	Priority
Car 1	0.875	0.875	0.0875
Car 2	0.125	0.125	0.125

COMPARISON QUESTION 2: WITH RESPECT TO THE COMFORT CRITERION, WHICH ALTERNATIVE IS PREFERABLE: CAR 1 OR CAR 2?

Comfort	Car 1	Car 2
Car 1	1.000	0.200
Car 2	5.000	1.000
Sum	6.000	1.200

Comfort	Car 1	Car 2	Priority
Car 1	0.167	0.167	0.167
Car 2	0.833	0.833	0.833

COMPARISON QUESTION 3: WITH RESPECT TO THE SAFETY CRITERION, WHICH ALTERNATIVE IS PREFERABLE: CAR 1 OR CAR 2?

Safety	Car 1	Car 2
Car 1	1.000	0.111
Car 2	9.000	1.000
Sum	10.000	1.111

Safety	Car 1	Car 2	Priority
Car 1	0.100	0.100	0.100
Car 2	0.900	0.900	0.900

What is the CI of the previous tables ?

Alternatives	Cost	Comfort	Safety
Car 1	0.875	0.167	0.100
Car 2	0.125	0.833	0.900

5. DERIVE OVERALL PRIORITIES (MODEL SYNTHESIS)

Calculate the overall priority (also called final priority)5 for each alternative; that is, priorities that take into account not only our preference of alternatives for each criterion but also the fact that each criterion has a different weight.

5. DERIVE OVERALL PRIORITIES (MODEL SYNTHESIS)

	Cost	Comfort	Safety	
Criteria Weights ->	0.669	0.088	0.243	
Car 1	0.875	0.167	0.100	
Car 2	0.125	0.833	0.900	_
	Cost	Comfort	Safety	Overall priority
Criteria Weights ->	0.669	0.088	0.243	
Car 1	0.585	0.015	0.024	0.624
Car 2	0.084	0.074	0.219	0.376

SENSITIVITY ANALYSIS

AHP APPLICATIONS

- Cost/Benefit Analysis
- Strategic planning
- R&D priority setting and selection
- Technology choice
- Investment priority
- Evaluation of alternatives

Fig. 4. Consequence of failure attributes.

		Absolu	te(L) str	rong(L) Str	rong(L) Mode	erate(L)	Equal Mo	derate S	Strong	strong
Chara	Station cteristics	c		с	с	c	с	с	с	с
•				11						ŀ
B. Main cri 14. With r eachothe	teria comp espect to ' r *	arison w "Station	ith respect Charact	ct to each of teristics", I	ther ; ndicate the re	elative im	portance o	fimpact	s over	
	Absol	9 lute(L)	7 Very strong(L)	5 Strong(L)	3 Moderate(L)	1 Equal	3 Moderate	5 Strong	7 Very strong	9 Absoli
Stati Locati	on (0	¢	С	С	С	C	C	C	C
•				10.						Þ
15. With re	espect to '	"Station	Location	n", Indicate	e the relative i	importan	ce of impa	cts over	eachoth	er*
	9 Absolut	7 te(L) st	7 Very rong(L)	5 Strong(L)	3 Moderate(L)	1 Equal (3 Moderate	5 Strong s	Very strong	9 Absolut
Station Size	e c		с	с	с	с	с	с	c	с
•										۹
16. With r eachothe	espect to r *	"Station	Nature o	of use", Inc	dicate the rela	ative imp	ortance of i	mpacts	over	
		9 Absolu	7 ite(L) str	Very rong(L) Str	5 rong(L) Mode	3 erate(L)	1 Equal Mo	3 derate S	5 Strong	7 Very strong
Chara	Station cteristics	C		С	С	С	С	С	С	c
4										Þ
C. Sub-crit	teria compa	arison wi	th respec	t to main cri	iteria;					

17. With respect to "Station Characteristics", Indicate the relative importance of impacts over

2019-10-15

eachother*

STR 665- Fall 2019

Assignment 1

- In groups of 4-5, perform critique and analysis for *ANY* of the following papers (uploaded to course website)
- Steps of a research paper critique process can be reviewed here
 - <u>https://www.ucalgary.ca/ssc/files/ssc/wss_critique_2014.pdf</u>
- Assignment due : 22/10/2019

References

- Mu E., Pereyra-Rojas M. (2017) Understanding the Analytic Hierarchy Process. In: Practical Decision Making. Springer Briefs in Operations Research. Springer, Cham. <u>https://doi.org/10.1007/978-3-319-33861-</u> <u>3 2</u>
- Aminbakhsh, S., Gunduz, M., & Sonmez, R. (2013). Safety risk assessment using analytic hierarchy process (AHP) during planning and budgeting of construction projects. *Journal of safety research, 46*, 99-105.