
Internal Structure of FreeRTOS

The Task Control Block (TCB) is the main data structure used by
FreeRTOS to represent a task and to store any information associated
with it. Some TCB data fields are essential and others may be omitted
if not needed (to save memory).

The scheduler uses a Ready Task List for each priority level, pointing to
the TCBs of ready tasks in this level. These lists are used to decide
which task to run in each clock tick.

In addition, there are lists for suspended tasks, delayed tasks, pending-
ready tasks, and waiting-for-termination tasks.

The stack of task holds its context when a context switching occurs.

ECP-622– Spring 2020 Week 11- Page 1

FreeRTOS Task Control Block (TCB)

ECP-622– Spring 2020 Week 11- Page 2

FreeRTOS Ready Task Lists

ECP-622– Spring 2020 Week 11- Page 3

FreeRTOS Ready Task List (More detailed)

ECP-622– Spring 2020 Week 11- Page 4

The following functions used in the FreeRTOS demo are optional and
can be omitted or modified:

vApplicationIdleHook

This hook (or call-back) function is executed in the idle task if
configUSE_IDLE_HOOK is set to 1.

vApplicationTickHook

This function is executed each clock tick if configUSE_TICK_HOOK is
set to 1. It should use fromISR API functions.

Optional Components of FreeRTOS Application

ECP-622– Spring 2020 Week 11- Page 5

vApplicationStackOverflowHook

Executed when a stack overflow occurs if a nonzero value is given to
configCHECK_FOR_STACK_OVERFLOW.

vApplicationMallocFailedHook

Executed in case of error in memory allocation (i.e. pvPortMalloc()
returns null) if configUSE_MALLOC_FAILED_HOOK is set to 1.

This function is used if the macro configASSERT(expression) is

defined. This macro is used to abort program and display an error

message if expression is false. (This increases code size and

execution time and is thus used only during debugging.)

vAssertCalled

Optional Components of FreeRTOS Application

ECP-622– Spring 2020 Week 11- Page 6

prvInitialiseHeap

Needed only if heap_5.c is used for memory management.

prvSaveTraceFile

Used to generate debugging trace files if configUSE_TRACE_FACILITY
and configGENERATE_RUN_TIME_STATS are set to 1.

When running FreeRTOS on microcontrollers, a prvSetupHardware()
function will always be needed to configure the hardware.

Optional Components of FreeRTOS Application

ECP-622– Spring 2020 Week 11- Page 7

File Management in FreeRTOS

Third party FAT system is available for FreeRTOS. This is an open
source, small footprint, thread aware DOS/Windows compatible file
system that supports FAT12, FAT16, and FAT32 systems.

API functions are provided for:

o File operations: open, close, rename, delete, read, write, …etc.

o Directory/folder functions: make directory, change directory,
remove directory, ….etc.

o Disk management: partition, format, mount.

A RAM-disk demo is provided for the simulator (FreeRTOS-Plus for
version 9 and in FreeRTOS Labs for version 10).

ECP-622– Spring 2020 Week 11- Page 8

File Management in FreeRTOS

ECP-622– Spring 2020 Week 11- Page 9

ECP-622– Spring 2020 Week 11- Page 10

It was successfully ported to a wide range of 32-bit and 64-bit
architectures.

Linux is highly modular and configurable, which makes it possible to
remove all unnecessary functionality to allow Linux to run from
minimum hardware.

Currently, a large portion of embedded market is based on Linux.
Android, which is based on the Linux kernel, can be considered a form
of embedded Linux adapted to touch-based mobile devices.

Linux started in the 1990s as a free, open source version of UNIX for
Intel x86 PCs.

Embedded Linux

Week 11- Page 11

Typically, distributions make use of a package manager that simplifies
the initial installation and subsequent upgrading of system and to
manage installation and removal of other packages on the system.

The complete operating system can be obtained in the form of a Linux
distribution. A distribution contains all the components needed in a
Linux installation. These include the Linux kernel together with
(usually open source) utility programs, graphical environments,
development tools, etc.

ECP-622– Spring 2020

Embedded Linux

Week 11- Page 12

Embedded devices typically require support for a specific set of
devices, peripherals, and protocols. An embedded Linux kernel will be
far smaller than an ordinary Linux kernel.

Embedded Linux distributions are usually compiled on one platform
but are intended to be executed on another.

Distribution can be customized to specific hardware, applications, and
required interface.

ECP-622– Spring 2020

Embedded Linux

Week 11- Page 13

Linux Kernel

Source: [Tanenbaum 15]

ECP-622– Spring 2020

Week 11- Page 14

Linux processes can be created using the fork()system call of traditional
UNIX. It generates an exact duplicate of the calling process. It then
returns 0 to the child process, and the child's process id to the parent
process. If some error occurs, fork returns -1.

Typically, the child runs different executable file by using the exec()
function which replaces the process image by a new image.

ECP-622– Spring 2020

Linux Processes

Week 11- Page 15

Process can have multiple threads using the POSIX compliant pthread
library. It provides a set of functions for thread management.

#include <pthread.h>

Pthread_t tid;

Pthread_create (&tid, NULL, function, NULL);

…

…

Thread

identifier
Use default

attributes

Function to

Run in thread
arguments

ECP-622– Spring 2020

Linux POSIX Threads

Week 11- Page 16

A thread can terminate for different causes:

• when it executes the last instruction of the associated function
(normal termination).
• when it calls the pthread_exit() function.
• when another thread executes pthread_cancel()on it.
• when its parent process terminates with a normal termination or a
call to the exit() function.

ECP-622– Spring 2020

Linux POSIX Threads

It is possible to wait for the termination of a thread through the
function pthread_join().

Week 11- Page 17

The system call clone() can also be used to create threads. It is passed
a set of flags that determine how much sharing is to take place
between the parent and child tasks.

Source: [Tanenbaum 15]

ECP-622– Spring 2020

Linux clone()function

The clone() function is not portable to other systems. However, fork()
and pthread_create() are actually implemented in Linux using clone().

