
1

C functions malloc() and free() can be used to manipulate
the heap, but they typically have slow unpredictable time, and
are not safe to use with preemptions.

FreeRTOS needs to assign memory for each created task, queue,
or semaphore. Dynamic data structures may also be created
within application functions.

Memory management functions are part of the port-dependent
FreeRTOS code.

Memory Management in FreeRTOS

ECP-622– Spring 2020 Week 10- Page 1

FreeRTOS provides five sample memory allocation impleme-
ntations. Designer may select one of these according to the
application requirements, or else write his own memory
management code.

Prototype of functions used in all versions are void

*pvPortMalloc(size), which allocates memory of specified
size and returns a pointer to the allocated memory, and void

vProtFree(void *pv) which frees a previously allocated
memory area.

The versions are provided in the files heap_1.c, heap_2.c,
heap_3.c, heap_4.c, and heap_5.c.

Memory Management in FreeRTOS

ECP-622– Spring 2020 Week 10- Page 2



2

o heap_1.c

This version does not allow freeing memory, and thus assumes that
all memory is allocated statically before starting the scheduler, and
tasks, queues and semaphores will not be deleted.

This provides a simple guarantee of deterministic (predictable)
operation, however may not be suitable for systems with limited
memory where dynamic allocation is needed.

o heap_2.c

This version allows freeing of allocated blocks and uses best-fit
assignment. However, it does not merge free blocks together.

Memory Management in FreeRTOS

ECP-622– Spring 2020 Week 10- Page 3

Memory Management in FreeRTOS

ECP-622– Spring 2020 Week 10- Page 4



3

The Task Control Block (TCB) stores information associated with a task. Some
TCB data fields are essential and others may be omitted if not needed (to
save memory).

Memory Management in FreeRTOS

ECP-622– Spring 2020 Week 10- Page 5

This version is suitable if new objects (task, queue, ..,etc.) have
exactly the same size as the deleted ones. It is not deterministic
but more efficient than standard malloc()and free().

o heap_3.c

This version uses the standard malloc() and free() functions,
but suspends scheduler during their execution (using
vTaskSuspendAll() and xTaskResumeAll()) to make them
thread-safe.

o heap_4.c

This version uses first-fit and merges adjacent free blocks. It
provides less fragmentation and better use of available memory.

Memory Management in FreeRTOS

ECP-622– Spring 2020 Week 10- Page 6



4

o heap_5.c

This version is similar to heap_4.c but allows the heap to span
multiple non adjacent (non-contiguous) memory regions. It is the
version used in the Windows simulator.

The function xPortGetFreeHeapSize() can be used to get the
amount of unused area in heap, e.g. to optimize the choice of the
heap size .

Memory Management in FreeRTOS

ECP-622– Spring 2020 Week 10- Page 7

FreeRTOS (versions ≥ 9) allows static allocation of memory by the
application writer instead of automatic allocation by the system.

If configSUPPORT_STATIC_ALLOCATION is set to 1, the API functions
[object]CreateStatic() can be used instead of [object]Create()
functions.

If configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then RTOS
objects can only be created using RAM provided by the application
writer.

These function has additional arguments to specify the location
assigned to the object in memory.

Memory Management in FreeRTOS

ECP-622– Spring 2020 Week 10- Page 8



5

File System Management

OS manages the data stored on secondary storage devices,
which store large amounts of data in a nonvolatile manner.

OS simplifies access to data on these devices by providing the
abstract view of files, directories or folders, paths, …etc.

The overall system performance is affected by:

 Allocation of storage space to files.

 Organization of data on storage space.

 How the OS keeps track of storage space usage.

ECP-622– Spring 2020 Week 10- Page 9

Currently, most embedded operating systems provide file
management functions. Differences from general purpose systems
result from:

o Code size and power consumption limitations.

o Solid-state storage devices are typically used

Flash memory based devices provide relatively fast and inexpensive
storage, but have special requirements, e.g. for block erasures.

In addition, erase/write cycles results in quicker wear compared to
other storage devices. Thus, wear levelling techniques which
distribute access over the storage space and avoid using the same
blocks excessively are needed.

File System Management

ECP-622– Spring 2020 Week 10- Page 10



6

Allocation of Storage Space to Files

OS assigns each file an integer number of assignment units (may be
called blocks, clusters, …). The assignment unit is one or more
contiguous sectors (smallest storage units).

When selecting the unit size we try to:

o reduce lost disk space as a result of partially used units.

o reduce the size of the data structure needed to keep track of disk
space usage.

i.e. a compromise must be made.

Also, as file size increases, it may be fragmented, i.e. assigned non-
contiguous units, which slows down the file access.

ECP-622– Spring 2020 Week 10- Page 11

File Allocation Table (FAT)

FAT system was originally developed for small magnetic disks. It is not
suitable for currently available large-capacity hard disks. However, it is
widely used for solid-state storage devices in embedded applications.

System keeps track of space allocated to files using a table with an
entry for each cluster on device. Size of this entry is 8, 12, 16, or 32
bits according to version. Entry contains one of the following:

 Code for free cluster.

 Number of next cluster in file for which this cluster is assigned.

 End of File code.

 Code for bad cluster.

ECP-622– Spring 2020 Week 10- Page 12



7

free

21

22

26

free

25

56

EOF

20

21

22

23

24

25

26

19

Directory Entry

FAT

File name 20

First cluster of file

Each file has a chain of clusters in FAT ending by an EOF.

File Allocation Table (FAT)

ECP-622– Spring 2020 Week 10- Page 13

Example

cluster no  …. 10    11     12       13      14      15      16     17      18     19     20  
FAT entry   …. 11    12     16      Free    15      19      17    18     EOF   17    EOF...

A disk using FAT system has a cluster size of 2K bytes. Directory of this
disk indicates that the number of the first cluster in the file FILE1 is 10
and the first cluster in file FILE2 is 14. A part of the FAT of this disk is
shown below.

a) How much disk space is assigned to file FILE1? How much of this
space is wasted if this file contains 11000 bytes of data?

b) What is the error in the above FAT? What is its possible cause?

File Allocation Table (FAT)

ECP-622– Spring 2020 Week 10- Page 14



8

a) From the table, FILE1 is assigned clusters 10, 11, 12, 16, 17, 18. Thus, it is assigned
6 clusters, or 12K on disk. This occurred since five clusters will not be enough for the
11000 bytes of the file.

The wasted disk space (i.e. assigned to FILE1 but not holding data, and cannot be
used by any other file is

Wasted space = 12 × 1024− 11000 = 1288 𝑏𝑦𝑡𝑒𝑠

b) Both the entries of cluster 16 and 19 point to 17.  Thus table indicates that cluster 
17 is part of both FILE1 and FILE2 (this serious error is called cross-linked files).

Such errors occur when system make changes in FAT while in memory but fails to
update FAT on disk, e.g. after a power failure or disk not “safely” removed.

Information about each file in the system is stored in a structure called
an i-node.

I-node of a file stores its attributes and control information, as well as
addresses of the first blocks assigned to the file.

Directory entry of a file points to the place of its i-node on the disk. This
is brought to memory when the file is opened.

All i-nodes have a fixed size. To account for larger files, indirect
addressing (single, double, …) is used.

File Allocation in UNIX

ECP-622– Spring 2020 Week 10- Page 15



9

Directory entry

file name

i-node

The maximum file size is determined by the above arrangement.

File Allocation in UNIX

ECP-622– Spring 2020 Week 10- Page 16

In addition, system maintains a list of free blocks on the disk. The size
of this list shrinks as more data is stored on disk.

Errors may result in inconsistencies in the i-nodes and free list
information.

Compared to FAT, the method used by UNIX is best suited to large disks
with small files (Why?)

Directories and subdirectories in UNIX (and most of the other systems)
are treated as special files.

File Allocation in UNIX

ECP-622– Spring 2020 Week 10- Page 17



10

Example

A UNIX system has a hard disk with a block size of 2 Kbytes. This
system keeps track of disk space assignment using i-nodes containing
10 direct pointers as well as pointers for single and double indirect
addressing. Assume that block addresses are 4-bytes long.

a) Find the maximum file size in the above disk.
b) If a file of 8221 Kbytes is stored in the above disk, find the
corresponding wasted disk space.
c) What are the number of disk accesses required to open this file?
Make any necessary assumptions.

File Allocation in UNIX

ECP-622– Spring 2020 Week 10- Page 18


