

Approximation Algorithms Vertex Cover Problem

Prepared by:

Hussein Fadl Osman

Presented to:

Dr. Mayada Hadhoud

- 1. Review on Approximation Algorithms.
- 2. Vertex Cover Problem.
- 3. Approximation of VC problem.
- 4. AVC is a 2-polynomial approximation algorithm.

 Some algorithms are NP-complete, so we don't know how to find an optimal solution in polynomial time.

• Solutions:

- If **input size is small**, the exponential algorithm is perfectly OK.
- Isolate **important special cases** that we can solve in polynomial time.
- Find **near-optimal solutions** in polynomial time through approximation algorithms.

• Fact:

• Near optimality is good enough in most of the cases.

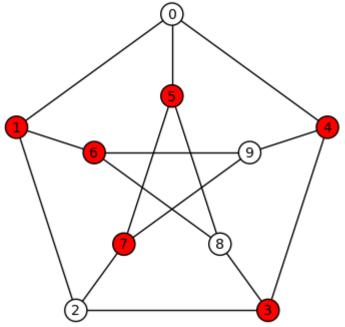
- C is the cost produced by the approximate algorithm.
- C* is the cost produced by the optimal algorithm.
- Assume that the cost is always positive.

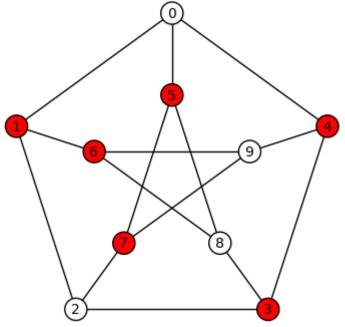
Two types of optimization problems:

$$0 \leq C \leq C^*$$

Minimization problem: $0 \le C^* \le C$ • We say that the algorithm of a given problem has an approximation ratio $\rho(n)$ if the cost of the solution **C** produced by the algorithm is of **factor** $\rho(n)$ of the cost **C**^{*} of the optimal solution.

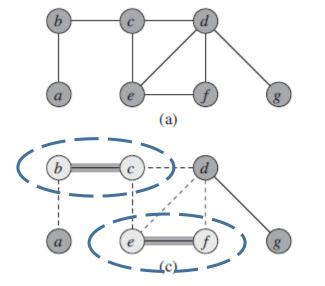
• Approximation ratio
$$\rho(n) = \max\left(\frac{C^*}{c}, \frac{C}{c^*}\right)$$

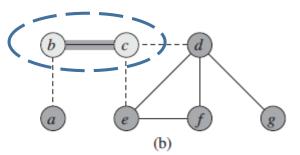

• Approximation ratio $\rho(n) \ge 1$

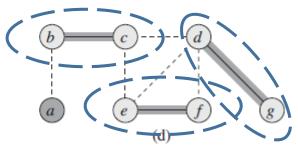

$$0 \leq C \leq C$$

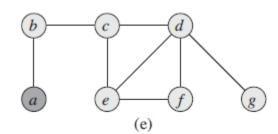
Minimization problem: $0 \le C^* \le C$

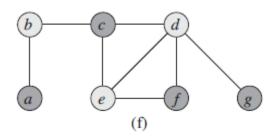
- A vertex cover of an undirected graph G = (V, E) is a subset V' ⊆ V such that if (u,v) is an edge of G, then either u ∈ V' or v ∈ V' (or both).
- The size of a vertex cover is the number of vertices in it.
- The vertex-cover problem is to find a vertex cover of minimum size in a given undirected graph.
- The vertex cover problem is **NP-complete**.


- A vertex cover of an undirected graph G = (V, E) is a subset V' ⊆ V such that if (u,v) is an edge of G, then either u ∈ V' or v ∈ V' (or both).
- The size of a vertex cover is the number of vertices in it.
- The **vertex-cover problem** is to find a vertex cover of minimum size in a given undirected graph.
- The vertex cover problem is **NP-complete**.




Approximate Algorithm for Vertex Cover Problem


APPROX-VERTEX-COVER (G)


- 1 $C = \emptyset$
- 2 E' = G.E
- 3 while $E' \neq \emptyset$
- 4 let (u, v) be an arbitrary edge of E'
- 5 $C = C \cup \{u, v\}$
- 6 remove from E' every edge incident on either u or v
- 7 return C

- Theorem:
- AVC is a polynomial-time 2-approximation algorithm.
- In other words:

AVC produces a solution of cost C that is twice the optimal cost C*.

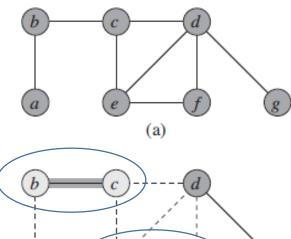
• What is meant by cost in this problem?

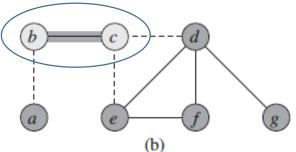
The size of the vertex cover set.

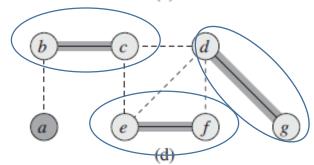
The smaller the size of the vertex cover set, the more optimal the solution.

• Theorem:

AVC is a polynomial-time 2-approximation algorithm.

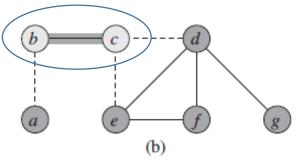

• To sum up, we need to proof that:

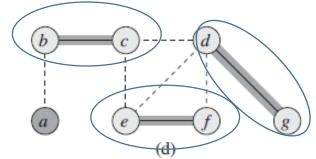

AVC produces a cover set that is TWICE the size of the optimal cover set.


Vertex Cover Problem: Theorem

• Proof:

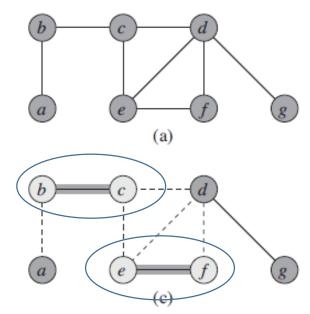
- 1. Let A denote the set of edges picked at random by AVC (at line 4).
- 2. Any vertex cover must:
 - Cover the edges in A.
 - Include at least one endpoint of each edge in A.
- 3. No two edges in A share an endpoint.
- 4. No two edges in A are covered by the same vertex in C*
 - $\therefore |\mathcal{C}^*| \ge A$

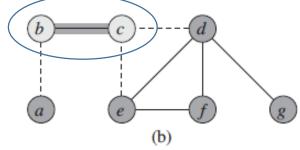

Vertex Cover Problem: Theorem

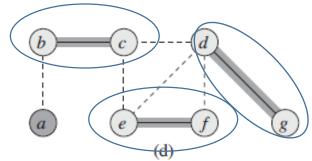

• Proof:

- 4. No two edges in A are covered by the same vertex in C*
 - $\therefore |\mathcal{C}^*| \ge |\mathcal{A}|$
- 5. Each execution of line 4 picks an edge (in which neither of its endpoints is already in C), yielding an upper bound on the size of the vertex cover returned:

$$\therefore |C| = 2 |A|$$


(a)





• Proof:

From (4): $\therefore |C^*| \ge |A| \rightarrow (1)$ From (5): $\therefore |C| = 2 |A| \rightarrow (2)$ Substituting (2) into (1) $\therefore |C| \le 2|C^*|$

Therfore, AVC is a 2-approximate algorithm.

