
1

FreeRTOS Interrupt Management

Interrupts are treated by hardware. Number of interrupt types
and their priorities depend on the microcontroller used.

Interrupt priorities are different from task priorities. Interrupts
can preempt any task.

Special versions of some API functions are available for use
within Interrupt Service Routines (ISRs). Only functions and
macros with name ending by FromISR are safe to be called
within an ISR.

Week 9- Page 1ECP-622– Spring 2020

Deferred Interrupts

It is preferred to make ISRs as short as possible to reduce their
effect on other tasks. ISR may just unblock a handler task that
performs the necessary processing.

This can be done using the function:

xSemaphoreGiveFromISR(handle,&variable)

Semaphore handle
This variable returns pdTRUE if a
task with higher priority than
current task was unblocked. In
this case, a context switch may be
forced.

Week 9- Page 2ECP-622– Spring 2020

2

Week 9- Page 3

Deferred Interrupts

ECP-622– Spring 2020

By forcing a task context switch (e.g. Using the function
portYIELD()), ISR and the handler task may respond rapidly
to external events if necessary.

FreeRTOS allows to define in the configuration files the interrupt
type for the tick timer. It allows also to define a range of
interrupt priority levels which always have priority higher than
the system. ISR in this range will never be preempted by the
system but should not call any API functions.

Week 9- Page 4

Deferred Interrupts

ECP-622– Spring 2020

3

Interrupts in FreeRTOS Simulator

o Interrupts are simulated in the Windows simulator using high
priority Windows threads.

o Functions used in ISR should have a prototype of the form:

Uint32_t FunctionName (void)

And function should return pdTRUE if a context switch need
to be forced, and pdFALSE otherwise.

ECP-622– Spring 2020 Week 9- Page 5

4

o An ISR is set to a given function using:

vPortSetInterruptHandler(interrupt number,FunctionName)

Where interrupt number is a number between 3 and 31.
Levels 0 to 2 are used by the simulator itself.

o Simulated interrupts are triggered using the function

vPortGenerateSimulatedInterrupt(interrupt number)

ECP-622– Spring 2020 Week 9- Page 6

Interrupts in FreeRTOS Simulator

Resource Allocation and Deadlocks

Many system resources (I/O devices, communication buses,
shared data,…) are assigned according to the following rules:

o Resource should be assigned exclusively to one task.

o Resource assignment cannot be preempted.

o A task that requests a resource assigned to another task is
blocked. The requests are queued until the resource
becomes free.

o A task may be assigned several resources at the same time.

These rules alone can lead to deadlock.

Week 9- Page 7ECP-622– Spring 2020

5

Simple example:

- Task A requests resource 1 and gets hold of it.

- then task B requests resource 2 and gets hold of it.

- then tasks A requests resource 2.

- then task B requests resource 1.

In general:

A set of tasks is said to be in a deadlock state if each task
in the set is blocked waiting for a condition that only
another task in the set can cause.

Resource Allocation and Deadlocks

Week 9- Page 8ECP-622– Spring 2020

Represent each task by a circular node.

Represent each resource by a square node.

Represent task request of a resource by a directed arc from
the task to the resource.

Represent resource assignment to a task by a directed arc
from the resource to the task.

Such situations are better described using graphs.

Resource graphs

A

B

i

j

Week 9- Page 9ECP-622– Spring 2020

6

A

B

Resource 1 Resource 2

The graph of the simple example contains a cycle: a path along
directed arcs starting from a node and returning to it.

In general, a system exhibits a deadlock if and only if its resource
graph contains a cycle.

It may be difficult to discover the presence of a cycle in a complex
graph.

Resource graphs

Week 9- Page 10ECP-622– Spring 2020

Resource graphs

No Deadlock

A

B

12

A

B
C

D

1

2

3

E

4

Deadlock. D is also blocked, E is not.

7

Approaches of handling deadlocks

 Ignore it completely: if the probability of its occurrence is
low and its consequences are not severe.

 Deadlock detection and recovery: allow deadlocks to occur,
but system must be able to detect a deadlock and recover by
killing one of the tasks.

 Deadlock prevention or avoidance : additional assignment
rules are used to make deadlocks impossible.

Week 9- Page 11ECP-622– Spring 2020

Some Deadlock Prevention Methods

 Task must request all the resources it may need once at its
start.

No “hold and wait” condition.

 Give each resource a unique number. Task may access
resources at any time, but in numerical order.

No “circular wait” condition.

These methods may lead to inefficiency in the use of system
resources: resources may be allocated but unused for a long
period and starvation is possible.

Week 9- Page 12ECP-622– Spring 2020

8

Some Deadlock Prevention Methods

Using this last method, cycle cannot occur in graph

A

B

Resource i Resource j

A holds 𝑖 and requests 𝑗 ∴ 𝑗 > 𝑖

B holds 𝑗 and requests 𝑖 ∴ 𝑖 > 𝑗

Since numbers are unique, this is impossible.

Some Deadlock Prevention Methods

Task A

Requests 3

Requests 10

Needs 7, cannot request it here

Must request it
Here.

9

Deadlock Avoidance – Banker’s Algorithm

In deadlock avoidance methods, the system is given in advance
additional information concerning which resources a task will
request and use. With this information, the system can decide
whether each request can be immediately accepted.

In the following we assume that some resources may be
identical (of same type). Task request to a resource of this type
can be satisfied by any free instance.

In Banker’s algorithm, the system will always be kept in a “safe
state”: a state (i.e. resource assignments) that cannot lead to
deadlock even in the worst case.

Week 9- Page 13ECP-622– Spring 2020

o When a task requests a resource, system will accept the
request if:

 there is a free resource of the required type,

 maximum declared by the process is not exceeded, and

 this assignment will keep the system in a safe state.

Otherwise, the request is denied and the process is blocked.

Deadlock Avoidance – Banker’s Algorithm

o Each task declares at its start its maximum requirements of
each resource type.

These will not be assigned to the process until actually needed.

Week 9- Page 14ECP-622– Spring 2020

10

Example (1): A system that has 5 devices of the same type and
runs three tasks. Consider the following state:

The above state is a feasible state (Why?)

What if process B had declared a maximum of 4?

Deadlock Avoidance – Banker’s Algorithm

State is safe since system can still allocate resources to each task
(up to its maximum) in some order and avoid a deadlock.

Task Resources held Declared max.

A 1 3

B 2 3

C 1 3

Week 9- Page 15ECP-622– Spring 2020

Deadlock Avoidance – Banker’s Algorithm

In general, assume we have 𝑛 tasks and 𝑟 resources of the same
type, with each task 𝑖 declaring a maximum usage of 𝐶𝑖
resources. If task 𝑖 is assigned 𝑃𝑖 resources, the state (𝑃1, 𝑃2, ….,
𝑃𝑛) is feasible if and only if:

𝑖=1

𝑛

𝑃𝑖 ≤ 𝑟

𝑃𝑖 ≤ 𝐶𝑖 ≤ 𝑟

and

∀𝑖

Week 9- Page 16ECP-622– Spring 2020

11

Deadlock Avoidance – Banker’s Algorithm

And the state (𝑃1, 𝑃2, …., 𝑃𝑛) is safe if and only if we can find an order
of task execution (𝑠1, 𝑠2, …., 𝑠𝑛) such that:

𝑟 −

𝑖=1

𝑛

𝑃𝑖 ≥ 𝐶𝑠1 − 𝑃𝑠1

𝑟 −
𝑖=1
𝑖≠𝑠1

𝑛

𝑃𝑖 ≥ 𝐶𝑠2 − 𝑃𝑠2

𝑟 −
𝑖=1
𝑖≠𝑠1,𝑠2

𝑛

𝑃𝑖 ≥ 𝐶𝑠3 − 𝑃𝑠3

……..

n conditions

Week 9- Page 17ECP-622– Spring 2020

Example (2): A system that has 11 devices of type 1 and 12
devices of type 2, and is running three tasks. Consider the
following state:

Is the above state a feasible state?

Is it a safe state? Will a system using the Banker’s algorithm
accept being in this state?

Deadlock Avoidance – Banker’s Algorithm

Task
Type 1
held

Type 1
max

Type 2
held

Type 2
max

A 3 4 4 9

B 2 5 3 9

C 4 6 2 2

Week 9- Page 18ECP-622– Spring 2020

12

Deadlock Avoidance – Banker’s Algorithm

In general, assume we have 𝑛 tasks and m resource types, with
𝑟𝑗 resources available from type 𝑗 . Each task 𝑖 declares a

maximum usage of 𝐶𝑖,𝑗 resources from type 𝑗. If task 𝑖 is

assigned 𝑃𝑖,𝑗 resources from type 𝑗, the resulting state is feasible

if and only if:

𝑖=1

𝑛

𝑃𝑖,𝑗 ≤ 𝑟𝑗

𝑃𝑖,𝑗 ≤ 𝐶𝑖,𝑗 ≤ 𝑟𝑗

and

∀𝑖, 𝑗

∀𝑗

Week 9- Page 19ECP-622– Spring 2020

Deadlock Avoidance – Banker’s Algorithm

And the state is safe if and only if we can find an order of
execution task (𝑠1, 𝑠2, …., 𝑠𝑛) such that:

𝑟𝑗 −

𝑖=1

𝑛

𝑃𝑖,𝑗 ≥ 𝐶𝑠1,𝑗 − 𝑃𝑠1,𝑗

𝑟𝑗 −
𝑖=1
𝑖≠𝑠1

𝑛

𝑃𝑖,𝑗 ≥ 𝐶𝑠2,𝑗 − 𝑃𝑠2,𝑗

𝑟𝑗 −
𝑖=1
𝑖≠𝑠1,𝑠2

𝑛

𝑃𝑖,𝑗 ≥ 𝐶𝑠3,𝑗 − 𝑃𝑠3,𝑗

……..

𝑛 × 𝑚 conditions

∀𝑗

∀𝑗

∀𝑗

Week 9- Page 20ECP-622– Spring 2020

