
1

Response Time Analysis with Task Blocking

We can use Worst-Case Response Time Analysis to study real-time
schedulability when tasks are not independent, but interacting with
each other.

Tasks may be forced to be blocked waiting for other tasks, thus
increasing their worst-case response time. In fact, task may be
blocked waiting for tasks of lower priority, which is known as the
“priority inversion” problem.

Consider three tasks A,B, and C. Assume A has the highest priority and
C has the lowest priority. A and C access a common resource.

ECP-622– Spring 2019 Week 5- Page 1

C starts

C locks
resource

B starts

C releases
resource

A tries to access
resource and blocks

A starts
A is unblocked

time

A A

B

C C C

Priority Inversion

Week 5- Page 2ECP-622– Spring 2019

2

Note that A was forced to wait for C (necessary for consistency) and
for B as well (which is not really necessary).

Effect of priority inversion on high-priority tasks can be alleviated
using the “Priority Inheritance” protocol.

If a high-priority task 𝜏𝐻 is blocked waiting for a resource held by a
low-priority task 𝜏𝐿, task 𝜏𝐿 operates at the priority level of 𝜏𝐻 until it
releases the resource (i.e. end of “critical section”). Any task 𝜏𝑀 with
intermediate priority cannot thus preempt 𝜏𝐿 .

Note that 𝜏𝑀 may nevertheless be preempted by 𝜏𝐿 , which
temporarily has higher priority (push-through blocking).

Priority Inversion

Week 5- Page 3ECP-622– Spring 2019

C starts

C locks
resource

B released

C releases
resource

A tries to access
resource and blocks

A starts A is unblocked

time

C inherits
Priority of A

A A

C C

B

Priority Inheritance

Week 5- Page 4ECP-622– Spring 2019

3

Priority Inheritance

With priority inheritance, worst-case response time can be calculated
as:

𝑅𝑖 = 𝑝𝑖 + 𝐵𝑖 +

𝑗∈ℎ𝑝(𝑖)

𝑅𝑖
𝑇𝑗
𝑝𝑗

where 𝐵𝑖 is a blocking factor, accounting for interference by lower
priority tasks.

𝐵𝑖 will include the WCET of a resource’s low-priority critical section if
this resource is accessed by a task with priority less than 𝑖, AND task
with priority equal to or higher than 𝑖.

Note that this covers both direct and push-through blocking delays,
and that the low priority task can interfere with the higher priority
task only once.

Week 5- Page 5ECP-622– Spring 2019

Priority Inheritance

Example (1):
Task 𝑖 𝑝𝑖 𝑇𝑖 𝑑𝑖

A 9 75 75 Uses k with time= 5

B 20 35 35

C 5 20 20 Uses resource k

𝑅𝐶 = 5 + 5 = 10 < 𝑑𝐶

If fixed priorities are selected according to RM.

𝑅𝐵 = 20 + 5 +
𝑅𝐵
20
× 5 which converges to 35= 𝑑𝐵.

𝑅𝐴 = 9 +
𝑅𝐴
20
× 5 +

𝑅𝐴
35
× 20 which converges to 69< 𝑑𝐴.

Week 5- Page 6ECP-622– Spring 2019

4

A minimum set of system calls that handle message passing
is the following:

send (destination, &message)

receive (source, &message)

Some communication mechanisms, such as semaphores,
require a shared memory among tasks. The method of
message passing is more general.

Many design options exist for the message format, addressing
methods, synchronization modes, and queuing discipline. All
these can affect program timing.

Message queues and mailboxes

Week 5- Page 7ECP-622– Spring 2019

Addressing Method

 Direct addressing: using task id.

Allows only one-to-one communication.

 Indirect addressing : using mailboxes

Allows many-to-one, one-to-many or many-to-many modes.

Message Format

Typically, message is a sequence of bytes with fixed or variable
length. Correct interpretation of message content is the
responsibility of the communicating tasks, not the operating
system.

Message queues and mailboxes

Week 5- Page 8ECP-622– Spring 2019

5

in asynchronous send, sender will continue operation
regardless of whether the message was received or not.

In synchronous send, the sender will be blocked until it receives
an acknowledgment from the receiver.

Queuing and Synchronization

If no message is available, the receiver will typically be blocked
until one arrives. Alternatively, it can return immediately with
an error code.

Sender can operate in one of two modes:

Week 5- Page 9

A message sent but not yet received is queued by the system.
Queue will have a pre-specified maximum capacity.

ECP-622– Spring 2019

Task A

send message to B

A is blocked

A receives ack.

A continues

Task B

B executes receive

B sends ack

B continues

Message Synchronization Modes

Week 5- Page 10ECP-622– Spring 2019

6

Task A

send message to B

A is blocked

A receives ack.

A continues

Task B

B executes receive

B sends ack

B is blocked

B continues

Message Synchronization Modes

Week 5- Page 11ECP-622– Spring 2019

Example (2): Mutual exclusion using messages

A controlling task (call it SYNCH) will be used to control the
access to the shared resource. The mailbox Synch_mail will also
be created.

To access resource, any task will use the following sequence:

send(Synch_mail,’request’);

receive(Synch,’permit’);

Access_resource;

send(Synch_mail,’clear’);

Message queues and mailboxes

Week 5- Page 12ECP-622– Spring 2019

7

Example (3): The Reader/Writer Problem

A buffer of size n with reader and writer tasks running at
different speeds.

Reader task

receive(reader,’empty’);

send(writer,’empty’);

receive(writer,’full’);

Read_data_item;

Writer task

Write_data_item;

send(reader,’full’);

Message queues and mailboxes

Week 5- Page 13ECP-622– Spring 2019

The queue of messages can be managed using FCFS, or priorities
may be given to the messages.

In a remote invocation mode, sender waits for a reply from the
receiver and not just an acknowledgment of receipt.

Even with asynchronous send, the sender may be blocked if the
receiving queue or mailbox is full.

Message Synchronization Modes

Week 5- Page 14ECP-622– Spring 2019

8

FreeRTOS is an open source real-time kernel suitable for small to
medium sized microcontrollers (32K to 512K of flash memory
and 16K to 256K of RAM).

It is written mostly in C with few extra assembly routines. This
results in high degree of portability.

Kernel is a library of modules which are linked to application
code to build the application executable image. Several add-on
libraries are available. Kernel itself has a small footprint (as low
as 9KB).

Introduction to FreeRTOS

Week 5- Page 15ECP-622– Spring 2019

Applications are arranged as a collection of independent
threads of execution, called “tasks”. In most implementations
there is no memory protection, so all tasks share the same
memory space.

Tasks can be created by main program and also a task can create
other tasks.

In each task, a specific C function is executed. It is possible to
run the same function in any number of separate independent
tasks.

FreeRTOS Tasks

Tasks are created using the API function xTaskCreate().

Week 5- Page 16ECP-622– Spring 2019

9

xTaskCreate(

/* Name of executed function.*/

ATaskFunction,

/* Name of Task used in debugging.*/

“LED”,

/*Size of task stack in words.*/

1024,

/*Parameters passed to the task.*/

NULL,

/*The priority of the task.*/

2 ,

/* A handle to the task if needed.*/

NULL);

Week 5- Page 17

FreeRTOS Tasks

ECP-622– Spring 2019

void ATaskFunction (void *pvParameters)

{
/* variable declarations goes here. */

*/Task function should take a void pointer parameter

and return void.*/

for (; ;)

{

}

/*Task functionality always within an infinite loop*/

}

/* Task functions never return to caller.*/

Week 5- Page 18

FreeRTOS Tasks

ECP-622– Spring 2019

10

Task has an initial priority represented by an unsigned word. 0
corresponds to lowest priority, and highest priority is
determined by the constant configMAX_PRIORITIES defined in
file FreeRTOSConfig.h.

Task scheduler starts running by calling the API function:

vTaskStartScheduler ();

To use API functions within program we need to include files
FreeRTOS.h and task.h.

Week 5- Page 19

FreeRTOS Tasks

ECP-622– Spring 2019

Scheduler runs higher priority tasks first. These tasks preempt
lower priority tasks.

Equal priority tasks run in round-robin with time slice specified
by configTICK_RATE_HZ.

System time is represented by ticks of the periodic interrupt.
For example, the API function vTaskDelay (100) puts the
calling task in blocked state for 100 ticks.

FreeRTOS Task Scheduling

Week 5- Page 20ECP-622– Spring 2019

11

Source: [Barry 10]

FreeRTOS Task Scheduling

Week 5- Page 21ECP-622– Spring 2019

Source: [Barry 10]

FreeRTOS Task Scheduling

Week 5- Page 22ECP-622– Spring 2019

