
1

Problem (1): A hard real-time system is required to run three periodic
tasks with periods of 10 ms, 25 ms and 45 ms, and execution times of
3 ms, 6 ms, and 19 ms per period respectively. The deadline of each
task is equal to its period.

a) Is the above task set schedulable using the RM algorithm? Explain
your answer.
b) If the task set is not RM schedulable, can this be changed by
increasing the processor speed? If your answer is yes, find the
minimum factor by which the processor speed must be increased to
achieve schedulability (Assuming that periods will not be changed).

Week 4- Page 1ECP-622– Spring 2020

Week 4- Page 2ECP-622– Spring 2020

Problem (2): A hard real-time system is required to run three periodic
tasks with periods of 10, 25, and 45 ms, and execution times of 3, 6,
and 20 ms per period respectively. The deadline of each task is equal
to its period.

a) Is the above task set RM schedulable? Explain your answer.
b) Repeat part (a) for the case of EDF scheduling.
c) If the execution time or period of the first task can be changed:

i) find the least reduction in the execution time to achieve RM
schedulability.

ii) find the least increase in the period to achieve RM
schedulability.



2

Problem (3): A hard real-time system runs two independent periodic
tasks with periods of 50, and 20 ms, and execution times of 10 and 5
ms per period respectively. A third task with period of 70 ms is
required also to run on the system.

a) Find the maximum possible execution time for the third task under
RM scheduling, assuming that the deadline of each task is equal to its
period.
b) Repeat part (a) assuming EDF scheduling.
c) Use response-time analysis to find if the execution time obtained in
part (a) is still possible using Deadline Monotonic scheduling if third
task has a deadline of 45 ms (with its period still 70 ms).

ECP-622– Spring 2020 Week 4- Page 3

Real-Time Scheduling with Multiple Processors

It may be impossible to satisfy the requirements of a real-time
system using a single processor. Multiple processors (or cores) will
then be needed to implement the system.

New problems will arise, e.g. assignment of tasks to processors,
effect of communication delays, effect of shared cache and
coordination of processor schedules.

o Homogeneous: using identical processors

o Uniform: similar processors working at different supply
voltages/ frequencies.

o Heterogeneous: processors have different instruction sets.

Multiprocessor system may be: 

Week 4- Page 4ECP-622– Spring 2020



3

Partitioned vs. Global Scheduling

CPU1

CPU2

CPU3

𝜏1

𝜏2

𝜏3

𝜏4

𝜏5

In partitioned scheduling, each task is assigned to one processor
selected offline. The task is executed on the same processor
each time it is requested (no “task migration”).

A real-time scheduling policy is used to schedule tasks of each
processor.

Week 4- Page 5ECP-622– Spring 2020

However, partitioned scheduling may result in low processor
utilization: a processor may stay idle while a task waits for
another processor.

Partitioned vs. Global Scheduling

Assigning and scheduling problems with multiple processors are

computationally intractable (NP-complete problem), and thus

heuristic approaches are often employed.

This approach is equivalent to multiple uniprocessor systems.
Many results of uniprocessor scheduling are thus still useful.

Week 4- Page 6ECP-622– Spring 2020



4

Partitioned vs. Global Scheduling

CPU1

CPU2

CPU3

𝜏1𝜏2𝜏3𝜏4𝜏5

In global scheduling, all ready tasks are kept in a common
queue that is shared among the processors. Whenever a
processor becomes idle, a task from the queue is selected for
execution on that processor.

Week 4- Page 7ECP-622– Spring 2020

Better usage of processors is expected. However, few of the
results obtained for a single processor generalize directly to the
multiple processor case.

Task assignment is determined on-line with task migration
allowed. Thus, a task may run on a different processor when
released again or after being pre-empted.

Partitioned vs. Global Scheduling

Week 4- Page 8ECP-622– Spring 2020



5

In the following, we assume partitioned scheduling on identical
processors.

If tasks are independent, periodic, and pre-emptable; and the
deadline of each task is equal to its period, each processor can
use RM or EDF scheduling.

The problem of minimizing the required number of processors
is equivalent to the well-known problem of bin-packing.
Heuristics for solving this problem can be applied (e.g. first-fit
assignment).

Partitioned Scheduling

Week 4- Page 9ECP-622– Spring 2020

EDF with First-Fit decreasing assignment

The first step in task assignment is to find the minimum number
of needed processors.

If all processors use EDF, the total utilization of tasks assigned to
each processor cannot exceed 1. The following algorithm is
known to result in sub-optimal, but acceptable results:

Arrange tasks in non-increasing order of utilizations.

Assign next task to the first processor that will not be
overloaded by this task. If no such processor exists, add a new
processor.

Week 4- Page 10ECP-622– Spring 2020



6

Processor 1

0.7

𝜏2

0.5

𝜏4

0.4

𝜏7

0.25

𝜏3

0.2

𝜏1

0.2

𝜏6

0.1

𝜏5

𝜏2, 𝜏3  𝑢𝑖 = 0.95

Processor 2 𝜏4, 𝜏7, 𝜏5  𝑢𝑖 = 1

Processor 3 𝜏1, 𝜏6  𝑢𝑖 = 0.4

EDF with First-Fit decreasing assignment

Week 4- Page 11ECP-622– Spring 2020

For large number of processors, the above algorithm is known to
result in no more than 1.22 of the minimum number of
processors.

With RM scheduling, we have a variable-size bin-packing
problem, which is more complex than the uniform–size case.

EDF with First-Fit decreasing assignment

Week 4- Page 12ECP-622– Spring 2020



7

In many cases, running processes (or threads) will not run
independently of each other:

 They may cooperate within a given application and need to
exchange information.

 They may need to synchronize their operation in some way,
e.g. to avoid using a certain data item before being set up
properly.

 There may be a need to avoid problems resulting from
competition on shared resources (e.g. in “critical sections”).

Process Interaction and communication

Week 4- Page 13ECP-622– Spring 2020

X: 3
Y: 5X: 1

Y: 8

Task A Task B

Task A

Task B

Reads x=3

Writes x=1 and y=8

Preemption

Assumes x=3 and y=8

Reads y=8

Task should lock the resource while accessing it. A task trying
to access a locked resource cannot run until the resource
becomes available (Mutual exclusion of critical sections).

Process Interaction and communication

Week 4- Page 14ECP-622– Spring 2020



8

Shared int lock=0;

………

while (lock){};

lock =1;  

Access_data_item();

lock =0;

Mutual Exclusion

What are the disadvantages of the shown simple solution?

Week 4- Page 15ECP-622– Spring 2020

Semaphores

A semaphore is a shared integer variable on which the following
two system functions are defined

Down(s)
If s  1 then s:= s-1

else block the calling process

Up(s)
If there are processes blocked by down(s)

then unblock one of them 

else s:= s+1;

down( ) and up( ) are executed without interruption.

Week 4- Page 16ECP-622– Spring 2020



9

We can enforce mutual exclusion using semaphores as follows:
(m initially=1)

Process 1 Process 3Process 2

……
<non-critical>

down(m);

critical section;

up(m);

<non-critical>

……

……
<non-critical>

down(m);

critical section;

up(m);

<non-critical>

……

……
<non-critical>

down(m);

critical section;

up(m);

<non-critical>

……

Mutual Exclusion with Semaphores

Week 4- Page 17ECP-622– Spring 2020

The Reader/Writer Problem

Writer

Buffer
Size=n

Reader

Task 1
Task 2

Task 1 prepares data items and stores them in a buffer that can hold
up to n items. If it tries to write while buffer is full, it should be
blocked. Task 2 independently read and remove items from buffer. If
buffer is empty, task 2 should be blocked.

Week 4- Page 18ECP-622– Spring 2020



10

Writer code

..

..
down(empty);

Write_item ;

up(full);

..

..

Reader code

..

..
down(full);

Read_item ;

up(empty);

..

..

We use two semaphores, empty (initially = n ) and full (initially =0). 

The Reader/Writer Problem

Week 4- Page 19ECP-622– Spring 2020

Signaling using Semaphores

Task 1 Task 2 Task 3

fn1() fn2() fn3()

...

...

...

...

...

...

How to use semaphores such that fn2() in task 2 is not executed
until fn1() ends execution, and fn3() in task 3 is not executed
until fn2() ends execution.

Week 4- Page 20ECP-622– Spring 2020


