Theorem: For task $i$, the minimum nonzero separation of a task instance release time from the corresponding frame start time is $\operatorname{gcd}\left(f, T_{i}\right)$.

## Proof:

Let $g=\operatorname{gcd}\left(f, T_{i}\right)$, it follows from the definition of the greatest common divisor (gcd) that $g$ must divide each of $f$ and $T_{i}$. Let $i$ be a task with zero phasing. Now, assume that this theorem is violated for certain integers $m$ and $n$, such that the $n$th release of task $i$ occurs in the $m t h$ frame and the difference of the start of the $m t h$ frame and the release of the $n t h$ instance is a nonzero value less than $g$, that is

$$
0<\left(m \times f-n \times T_{i}\right)<g
$$

Dividing this expression throughout by $g$, we get

$$
0<\left(m \times f / g-n \times T_{i} / g\right)<1
$$

However, both $f / g$ and $T_{i} / g$ are integers because $g=\operatorname{gcd}\left(f, T_{i}\right)$. Therefore we can write $f / g=I_{1}$, and $T_{i} / g=I_{2}$ for some integer values $I_{1}$ and $I_{2}$. Substituting in the above inequality we get

$$
0<\left(m \times I_{1}-n \times I_{2}\right)<1
$$

Since $m \times I_{1}$ and $n \times I_{2}$ are both integers, their difference cannot be a fractional value between 0 and 1 . Therefore this inequality can never be satisfied.

It can therefore be concluded that the minimum time between a frame boundary and the arrival of the corresponding instance of task cannot be less than $\operatorname{gcd}\left(f, T_{i}\right)$. [Actually it cannot be less than any common divisor, thus its minimum value is the gcd.]
(Proof adapted from notes by Rajib Mall).

