
1

Process Management

The Process Concept

A process is usually defined as a “program in execution”.

A program is a static sequence of instructions stored in memory.
The process is the dynamic operation of executing a program

The process is the fundamental unit of computation that the
system must manage. It is the unit to which resources are
assigned.

ECP-622– Spring 2020 Week 2- Page 1

Process State Diagram

Ready

Blocked Running

Release

Finish

Preemption

ECP-622– Spring 2020 Week 2- Page 2

2

UNIX process state diagram

Process State Diagram

Source:[Stallings 18]

ECP-622– Spring 2020 Week 2- Page 3

Process Tree

Process A

Process B

Process DProcess C

Parent process can spawn one or
more child processes. Parent
either wait for the child or run
concurrently with it.

New process is generated using
a special system call.

In some simple embedded
systems, all processes are
statically started at
initialization.

ECP-622– Spring 2020 Week 2- Page 4

3

Process Tree

Example: Typical LINUX process tree

Source: [Silberscahtz 18]

ECP-622– Spring 2020 Week 2- Page 5

Process Control Block

Information needed by the system to control a process is stored
in an appropriate data structure.

Stored information include:

Process id, parent id, owner id.

Process context.

Process state.

Memory and I/O resources assigned to the process.

ECP-622– Spring 2020 Week 2- Page 6

4

PCB

Process Control Block

ECP-622– Spring 2020 Week 2- Page 7

POSIX (Portable Operating System Interface) is a family of IEEE
standards (1003.1, 1003.1b for RT extensions) that aim at maintaining
compatibility between operating systems. POSIX defines the
application programming interface (API) rather than implementation
itself.

Applications can be migrated between POSIX-compliant operating
systems with little modifications.

Process generation in POSIX is based on the fork system call. fork is
used to create a new process by generating an exact duplicate of the
calling process. It then returns 0 to the child process, and the child's
process id to the parent process. If some error occurs, fork returns -1.

Process Creation in POSIX

ECP-622– Spring 2020 Week 2- Page 8

5

pid_t pid = fork();

if (pid == -1) printf("Error while forking \n");

else if (pid == 0) {

exec function

}

else {

wait function

}

Process Creation in POSIX

ECP-622– Spring 2020 Week 2- Page 9

So far, we assumed that a process has a single thread of
execution: i.e. a single sequence of executed instructions.

In many applications, however, several parts of the same
process can run in parallel. These parts share memory address
space and other resources.

In a multithreading system, a process may be composed of
several threads that run in parallel.

Memory space, I/O devices, ..etc. are assigned to a process.
However, CPU time is assigned to a single thread. Each thread
has independent state and context.

Multithreading

ECP-622– Spring 2020 Week 2- Page 10

6

Advantages of Multithreading

o Process can remain responsive if a part of it is blocked or
performs a long operation.

o Creating a new thread of an existing process requires less
time and resources than spawning a new process. Also
context switching between threads of the same process is
faster than switching to another process.

o In a mutliprocessor system, threads can be assigned to
different processors (or cores), thus speeding up the
execution of a given process.

Multithreading

ECP-622– Spring 2020 Week 2- Page 11

Process Scheduling

Scheduling algorithm determines the order in which tasks are
executed on the processor(s).

A set of tasks is said to be schedulable with an algorithm A if A
generates an execution schedule that satisfies all constraints on
the tasks in the set.

In multitasking non-RT systems, scheduling is typically done by
round-robin scheduling with multiple queues corresponding to
different priority levels. Priority levels are allowed to be
adjusted based on the recent process behavior.

ECP-622– Spring 2020 Week 2- Page 12

7

Process Scheduling

For Real-time systems, especially hard RT systems, this is not
suitable.

ECP-622– Spring 2020 Week 2- Page 13

Real-time Scheduling

Real-Time Scheduling Algorithms

Offline, clock driven Online, priority driven

Fixed priority
scheduling

Dynamic priority
scheduling

e.g. cyclic executive

ECP-622– Spring 2020 Week 2- Page 14

8

Cyclic Executive Method

A widely used method to implement real-time programs,
especially in embedded systems.

Tasks are run in predefined and predictable manner. It can
hence be used to ensure that time constraints are met.

This method can provide an inexpensive alternative to the use
of an RTOS.

ECP-622– Spring 2020 Week 2- Page 15

Cyclic Executive Method

Initialize

WaitForTimer

Serve Event

Event ?

yes

no

Initialize

WaitForTimer

Task

We will assume that system runs periodic tasks (either periodic
execution of task or periodic polling for events).

ECP-622– Spring 2020 Week 2- Page 16

9

Cyclic Executive Method

To run multiple tasks, program
may be implemented as shown.

However, different tasks may have
different periods and deadlines.

Initialize

WaitForTimer

Task 1

Task 2

Task 3

ECP-622– Spring 2020 Week 2- Page 17

Cyclic Executive Method

Cyclic executive approach
interleaves the operation of
several tasks so that all
periods and deadlines are
satisfied.

Initialize

WaitForTimer

WaitForTimer

WaitForTimer

A,B

A,C

A,D,E

ECP-622– Spring 2020 Week 2- Page 18

10

Cyclic Executive Method

o System will have a major cycle which is continuously repeated.
Each task will be executed at least once in each major cycle.

The major cycle length is thus taken as the least common
multiple of task periods.

o Major cycle is divided into a number of minor cycles or frames.
A number of tasks will be called in each frame, with each task
executed at most once. We take Φ𝑖 = 0 for all tasks.

Frame boundaries correspond to the instants at which correct
timing is enforced. Exact timing cannot be controlled inside a
frame. For simplicity, we assume equal length frames.

ECP-622– Spring 2020 Week 2- Page 19

Cyclic Executive Method

Example (1):
Task Period

Execution

time
Deadline

A 25 10 25

B 25 8 25

C 50 5 50

D 50 4 50

E 100 2 100

Frame 1 (25 ms): A, B, C

Frame 2 (25 ms): A, B, D, E

Frame 3 (25 ms): A, B, C

Frame 4 (25 ms): A, B, D

Major Cycle
100 ms

ECP-622– Spring 2020 Week 2- Page 20

11

Cyclic Executive Method

ECP-622– Spring 2020 Week 2- Page 21

o It must be less than or equal to the deadline of any task.

o It must be greater than or equal to the WCET of any task.

o It must divide the major cycle length.

o At least one complete frame should exist between a task
release time and the corresponding deadline.

𝑓 ≥ 𝑝𝑖 𝑖 = 1,2, … . , 𝑛

2𝑓– gcd (𝑓, 𝑇𝑖) ≤ 𝑑𝑖

Constraints on Frame Length f

𝑓 ≤ 𝑑𝑖 𝑖 = 1,2, … . , 𝑛

𝑖 = 1,2, … . , 𝑛

ECP-622– Spring 2020 Week 2- Page 22

12

Release
time

Deadline

Complete frame

If task is executed in a complete frame between release time and
deadline, there is no need for timing checks within frame. (We are sure
that task is executed after release time and before deadline).
Otherwise, timing checks within frame will be necessary.

Constraints on Frame Length f

ECP-622– Spring 2020 Week 2- Page 23

Note that satisfaction of constraints on frame length does not
guarantee that a valid schedule can be constructed.

Constraints on Frame Length f

o After executing tasks within a frame, system remains idle, or some
background tasks may be executed.

Example(2): Three tasks with periods of 14, 20, and 22 ms and
execution times of 1,2, and 3 ms respectively. For all tasks, deadline
is equal to the period.

What are the possible values for the frame?

o To reduce response time to sporadic events, corresponding tasks
are typically executed before periodic tasks within a frame.

ECP-622– Spring 2020 Week 2- Page 24

13

Constraints on Frame Length f

To satisfy constraints it is often necessary to break up the task into
a number of subtasks, each fitting within a frame. Execution of
task may thus be spread over a number of frames.

One common method for task decomposition is to split it into a
number of coroutines with shorter execution time:

S S1; S2; S3;……; Sm

Note that splitting is done by the programmer and not by system
preemption.

ECP-622– Spring 2020 Week 2- Page 25

Easier to handle concurrency problems since there is no
preemption.

Different cycles can be defined for different modes of
operation.

Satisfies timing constraints without the need for an RTOS with
preemptive scheduling.

Efficient: less decision and switching overheads.

Advantages of Cyclic Executive Method

ECP-622– Spring 2020 Week 2- Page 26

14

Based on trial and error and difficult to optimize.

Not flexible and difficult to maintain.

May result in slower response time for high priority
processes, compared to preemptive techniques.

Disadvantages of Cyclic Executive Method

ECP-622– Spring 2020 Week 2- Page 27

