
1

Embedded and Real-Time Operating Systems

ECP-622

Dr. Hany M. Elsayed

بسم الله الرحمن الرحيم

Grading: Assignments 25%
Mid-term Exams 25%
Final Exam 50%

Lectures: Saturday 11:30 PM – 2:30 PM
HTC Room A05

Course material available at:

http://elearn.eng.cu.edu.eg

e-mail: helsayed@ieee.org

2

What is an Operating System?

An Operating System (OS) is a set of programs that:

Manages the computer hardware resources efficiently.

and

Provides a convenient user interface to the computer.

The operating system has a major influence on the overall
function and performance of any computing system.

ECP-622– Spring 2020 Week 1- Page 1

System
Programs

Application
Programs

Mass
Storage

Memory I /O

CPU

Hardware

Operating System

What is an Operating System?

Week 1- Page 2ECP-622– Spring 2020

3

The Functions of an Operating Systems

Week 1- Page 3ECP-622– Spring 2020

 Process Management

 Memory Management

 File System Management

 I/O Management

For study purposes, the functions of an operating system are
usually classified into functions of:

In actual implementation, each of these functions is not
performed separately.

Embedded Systems vs. General-Purpose Systems

Embedded systems have cost, power, and performance
constraints.

In an embedded system the computer is a part of a larger non-
computing system. Typically system is dedicated to a particular
set of tasks with timing constraints. In many cases, user has no
direct access to the computer.

Types of Operating Systems

Week 1- Page 4

Since requirements of applications vary widely, a high degree
of configurability is needed.

ECP-622– Spring 2020

4

Real-Time vs. Non-Real-Time Systems

Real-time operating systems are used to run applications with
real-time requirements, i.e. with timing constraints on
operation. RTOS must ensure that these constraints are met
under all operating conditions.

In systems with no real-time constraints, we are rather
interested in the average response time and throughput of the
system.

Week 1- Page 5

Types of Operating Systems

ECP-622– Spring 2020

Multitasking

In a multitasking system, OS allows having many programs active
at the same time.

Pseudo-parallel Truly parallel
time

A

B

C

Tasks

time

A

B

C

Tasks

Week 1- Page 6ECP-622– Spring 2020

5

Some Basic Requirements for Multitasking

For efficient operation, the multitasking system should keep
several programs in memory and switch CPU between them. All
programs must thus be relocatable: i.e. can run from any
available part in memory.

Thus, programs must use
relative rather than
absolute addresses.

Base

Offset

From OS

From

Program

Absolute

Memory

Address

Week 1- Page 7ECP-622– Spring 2020

While running, each program will have a context. This refers to
all the information needed for its operation: register contents,
memory pointers, …etc. Multitaskig requires continuous
switching between task contexts.

Task A

Task B

time

Save context of
A and restore
context of B

Save context of
B and restore
context of A

Week 1- Page 8

Some Basic Requirements for Multitasking

ECP-622– Spring 2020

6

Kernel Mode vs. User Mode

Week 1- Page 9ECP-622– Spring 2020

For proper operation, user programs should not be allowed to
perform some operations:

e.g. access memory of other programs.
stop program switching.
halt the processor.

Most advanced processors have two modes of operation:

Kernel mode: all instructions can be executed, used by OS.

User mode: some instructions are prohibited.

Several privilege levels may be available, e.g. Intel processors
have four levels and ARMv8 processors have seven levels.

What is a Real-Time System?

A computing system is said to be a real-time system if its
correctness depends not only on the logical results of its
computations, but also on the time at which these results
are produced.

A real-time systems is a computing system that must perform
computation within given timing constraints.

Week 1- Page 10ECP-622– Spring 2020

7

"Real-time" is not synonymous with "fast ".

Predictability is the most important aspect in real-time
computing.

Fast computing (a relative term anyway) usually implies
minimizing the average response time for a given set of
tasks.

The objective of real-time computing is to meet the
individual timing requirements of each task, even under
worst-case conditions.

Week 1- Page 11

What is a Real-Time System?

ECP-622– Spring 2020

Real-time systems are often "reactive" and/or "embedded"
systems.

A reactive system is one that maintains constant interaction with
its environment, through sensor readings, external interrupts,
outputs to actuators, ...etc.

Timing constraints are thus imposed by the requirements of the
external environment.

Week 1- Page 12

What is a Real-Time System?

ECP-622– Spring 2020

8

Examples of Real-Time Systems

Example 1: Robot Arm

Robot arm should pick up
an object from a moving
conveyor belt. If the arm
goes to the correct place
but is late, the object
won't be there anymore. If
the arm arrives early, the
object won't be there yet.

Week 1- Page 13ECP-622– Spring 2020

Example 2: Process Controller

ProcessActuator

Sensor

Controller
r ye u

Digital Computer

If the output samples are delayed beyond a certain limit, the
loop performance is degraded and system may even become
unstable.

Examples of Real-Time Systems

Week 1- Page 14ECP-622– Spring 2020

9

Examples of Real-Time Systems

Example 3: Audio/Video Communication

There are constraints on packet delay and/or delay variability
(Quality of Service requirements).

Network

Week 1- Page 15ECP-622– Spring 2020

Examples of Real-Time Systems

Week 1- Page 16ECP-622– Spring 2020

10

In a hard real-time system, failure to satisfy timing constraints
causes damage to the environment and cannot be tolerated.

In a soft real-time system, failure to satisfy timing constraints
does not cause any damage, it merely degrades performance.

Satisfaction of timing constraints must be guaranteed
under all conditions whatever the cost may be.

We may accept “low probability of missing a deadline”.

Week 1- Page 17

Hard Real-Time vs. Soft Real-Time Systems

ECP-622– Spring 2020

Hard Real-Time vs. Soft Real-Time Systems

Value of
output

Response time

Hard RT

Soft RT

An alternative way to indicate that it is “acceptable to
occasionally miss the deadline” is to define a value function:

Week 1- Page 18ECP-622– Spring 2020

11

How to Achieve Predictability?

Computer Architecture

Operating Systems

To build a predictable system, all its components (hardware and
software) should allow realizing this requirement.

What are the effects of such architectural features as
pipelining, caching, paging, ...etc.?

A Real-time operating system (RTOS) should manage
resources such that system behaviour is predictable under all
load conditions.

Week 1- Page 19ECP-622– Spring 2020

Programming Languages

Communication Networks

Fault-Tolerance Methods

An efficient real-time programming language simplifies the
development of large, complex systems.

How should protocols at different layers be modified to
handle real-time traffic?

Hard real-time systems are often safety critical systems that
must be as reliable as possible.

Week 1- Page 20

How to Achieve Predictability?

ECP-622– Spring 2020

12

Real-Time Task Models

Release
time (𝑎𝑖)

Start time (𝑠𝑖)

Execution
time (𝑝𝑖)

Finishing
time (𝑓𝑖)

Task 𝑖

𝑎𝑖 𝑠𝑖 𝑓𝑖

𝑝𝑖

time

Response time (𝑅𝑖)

Tasks are the building blocks of real-time applications. Typically,
many tasks will need to be active concurrently.

Task 𝑖

Week 1- Page 21ECP-622– Spring 2020

Real-Time Task Models

Task will have timing constraints on start time, response time, …
etc. A common form is an upper bound on the response time
(deadline).

𝑎𝑖 𝑠𝑖 𝑓𝑖

𝑝𝑖

time

Response time (𝑅𝑖)

Relative deadline (𝑑𝑖)

Absolute
deadline
(𝑡𝑑 = 𝑎𝑖 + 𝑑𝑖)

Slack

Week 1- Page 22ECP-622– Spring 2020

13

Real-Time Task Models

There may also be some precedence constraints: e.g. Task B can
only be released after Task A is finished.

Preemption is a mechanism allowing the operating system to
temporarily suspend the execution of a running task in order to
allow another task to run.

𝑎𝑖 𝑠𝑖 𝑓𝑖 time

Response time (𝑅𝑖)

Relative deadline (𝑑𝑖)

Preemption

Week 1- Page 23ECP-622– Spring 2020

Real-Time Task Models

Resource constraints result when several tasks need to access
some resource that can only be used by one task at a time (data,
I/O device, bus, …). If a task is preempted while accessing the
resource, using the resource by the preempting task can result in
errors and inconsistencies.

Preemption allows providing better response time to higher
priority tasks. Its disadvantages include time wasted in context
switching, cache and pipeline related timing costs, and the need
to handle possible resource conflicts.

Week 1- Page 24ECP-622– Spring 2020

14

Repetitive Task Models

In most applications the same task runs several times on
different inputs. The release of a new instance of the task may
be either:

Event driven (aperiodic): Task is triggered by the occurrence of
some event at an arbitrary time. Aperiodic task with associated
deadline is referred to as a sporadic task.
Minimum time between release times is typically specified.

Time driven (periodic): An instance of task is released each
period 𝑇𝑖 (e.g. with sampling or recurrent polling of events).

Week 1- Page 25ECP-622– Spring 2020

Periodic Real-Time Tasks

𝑎𝑖,1 time

𝑅𝑖,1

𝑎𝑖,2 𝑎𝑖,3

𝑑𝑖 𝑑𝑖

….

𝑅𝑖,2

𝑇𝑖 𝑇𝑖

First release time 𝑎𝑖,1 = Φ𝑖 is termed the task phase and the
ratio 𝑢𝑖 = 𝑝𝑖/𝑇𝑖 is referred to as the task utilization. In the
above figure there is a jitter in both start and finish times.

Week 1- Page 26ECP-622– Spring 2020

15

Worst-Case Execution Time (WCET)

To guarantee that all timing constraints are satisfied, we
should be able to estimate the execution time of a given
program code on a given hardware.

In general, this running time will be variable. This results from
the dependence of control flow on input data, and as a result
of hardware related factors.

Average execution time is an important performance measure
for ordinary systems. For a real-time system the Worst-Case
Execution Time (WCET) is the key measure.

For efficient system design, the estimates of the bounds on
execution time should be safe and as tight as possible.

Week 1- Page 27ECP-622– Spring 2020

Traditionally, estimates of execution time are obtained by direct
measurements. Thus, code is run many times with different data
sets, and the response times are measured (e.g. with a logic
analyzer).

Analysis methods not based on actually running the code (static
timing analysis) are thus preferable. To handle large
applications, an automated approach will be necessary.

However, usually the number of possible execution paths is too
large to allow an exhaustive testing. Without analysis there is no
guarantee that worst case will be accounted for.

Week 1- Page 28

Timing by Measurement

ECP-622– Spring 2020

16

Source: Ermedahl & Engblom 2008

Week 1- Page 29

Worst-Case Execution Time (WCET)

ECP-622– Spring 2020

Static WCET Analysis

The basic approach for WCET estimation requires analysis on
two levels:

1) Low Level Analysis: to determine the bounds on the
execution time of each basic block (branch free sequence of
instructions) in the program.

Note that this analysis has to be performed on the
compiled object code of a program.

This analysis should consider all the hardware details and
will be complicated by advanced architectural features.

Week 1- Page 30ECP-622– Spring 2020

17

ldi r16,2 1 clock cycle
mul r16,r2 2 clock cycles
movw r5,r0 1 clock cycle
mul r2,r3 2 clock cycles
sub r5,r0 1 clock cycle
sbc r6,r1 1 clock cycle
mul r2,r2 2 clock cycles
sub r5,r0 1 clock cycle
sbc r6,r1 1 clock cycle

z = 2*x − x*y − x^2

Low Level Analysis

With a clock frequency of 8 MHz, these instructions take 1.5 𝜇𝑠

Week 1- Page 31ECP-622– Spring 2020

Static WCET Analysis

2) Program Path Analysis: Program control flow is studied to
determine the possible paths which the program execution may
follow, and identify the time of the worst-case path.

Using appropriate formulas for each control structure, the
execution times of individual basic blocks are combined to
find time bounds of a complete task.

In the development of automated timing analysis tools, the two
levels of analysis may be combined in different ways.

Week 1- Page 32ECP-622– Spring 2020

18

Program Path Analysis

Program structure can be described
by a Control Flow Graph.

Each node represents a basic block.

An edge connects block to a block
that can be executed immediately
after it.

Source: Wilhelm 2008

Week 1- Page 33ECP-622– Spring 2020

References

A. Silberschatz, P.B. Galvin and G. Gagne, Operating System
Concepts , 10th Ed., John Wiley, 2018.

I.C. Bertolotti and G. Manduchi, Real-Time Embedded
Systems: Open-Source Operating Systems Perspective, CRC
Press, 2012.

Week 1- Page 34ECP-622– Spring 2020

