Metallic Structures – STR303

CHAPTER 5 BEAM COLUMN

Adminishi I mismisoli 38 misesii 12 Deemaha Adminishi seglainsi baa eemintuntuntun Shedi Steel Steel Steel Steel ydisteeringi attis 2 gaineeringi masting 16 ydhnessi

1. INTRODUCTION

- Beam Columns are structural members subjected to:
 - Bending moment (Simple or Bi-Axial)
 - Shear Force (Usually associated with the bending moment)
 - Torsion
 - Axial Force
- Combined Behavior of Beams and Columns

H. APPLICATIONS

- Columns of Frames
- Columns of Framed Truses
- Multi-Storey Buildings

III. Buckling Length of Columns

• Well Defined End Conditions

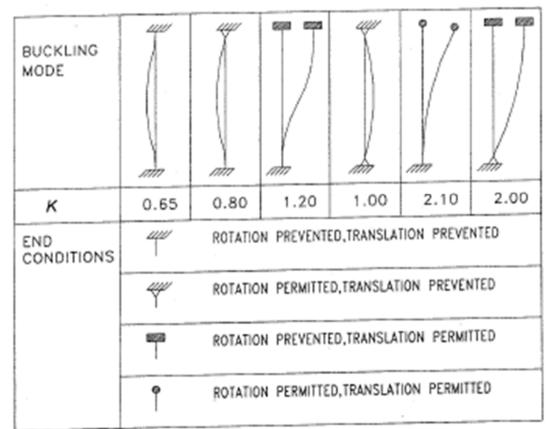
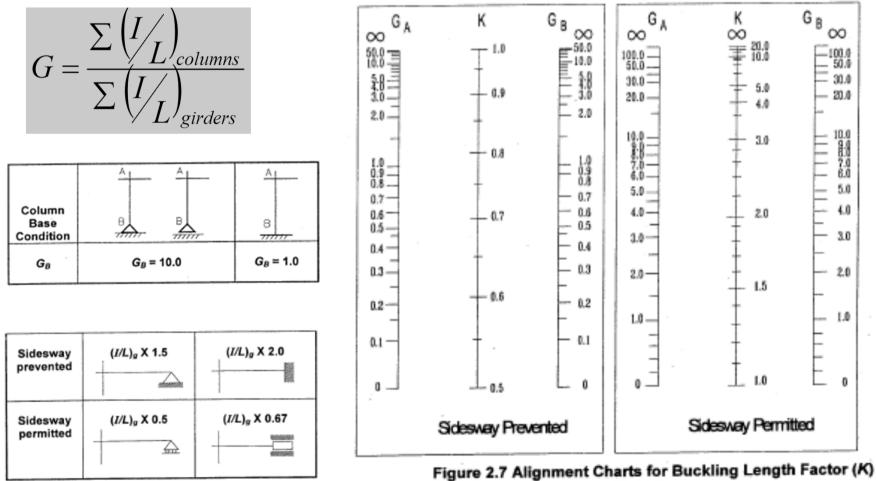
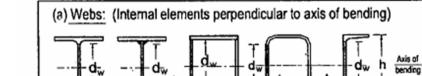
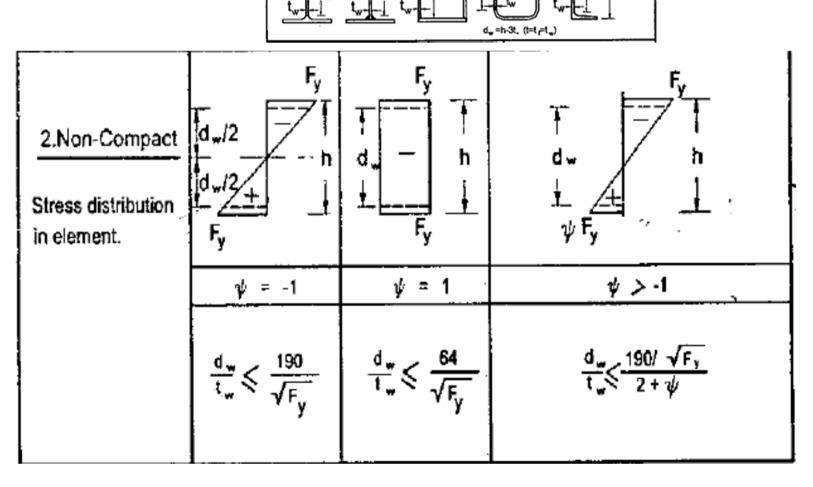



Table 2.4 Buckling Length Factor for Members with Well Defined End Conditions

III. Buckling Length of Columns

• Columns in rigid frames




of Columns in Rigid Frames

IV. Section Classification

Table (2.1a) Maximum Width to Thickness Ratios for Stiffened Compression Elements

Stiffened Web

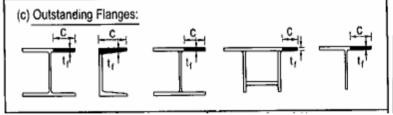
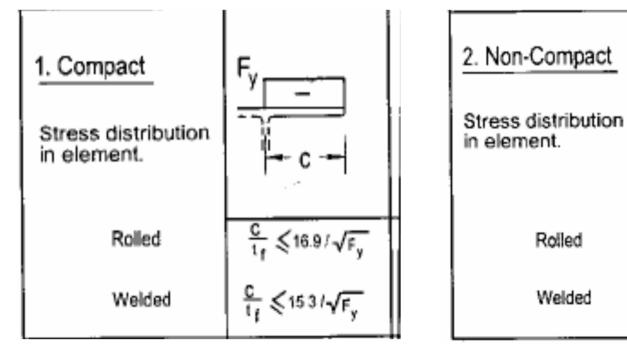

IV. Section Classification

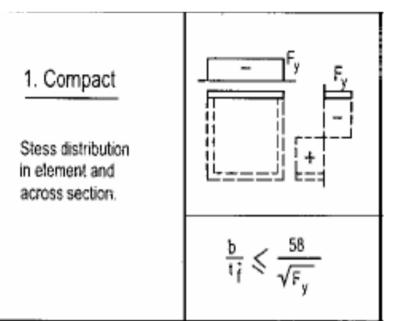
Table (2.1a) Maximum Width to Thickness Ratios for Stiffened Compression Elements

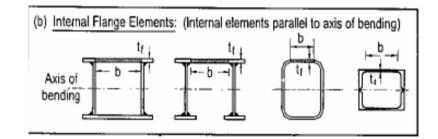
(a) Webs: (Internal elements perpendicular to axis of bending) • Stiffened Web Axis of bending d_=h-3t, (t=t_=t_) Web Subject to Web Subject to Bending Web Subject to Class / Type Compression and Compression Bending F, F, αα, 1. Compact ۵., n Stress distribution F, in element. (Not for single $\alpha > 0.5$ $\alpha = 0.5$ $\alpha = 1.0$ α ≼0.5 channel) d. _ 699 /√Fy 63.6/*a* $\frac{d_w}{1_w} \leqslant \frac{127}{\sqrt{F_v}}$ ₽<u></u>* 13a

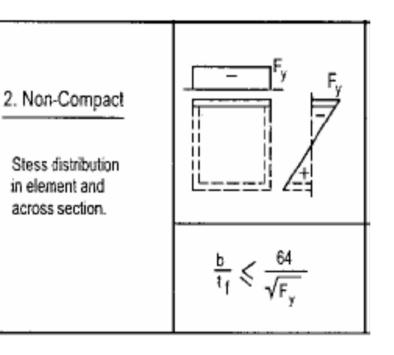
IV. Section Classification


- Un-stiffened Flange
 - Subjected to uniform compression
 - Same limits as Beams and Columns

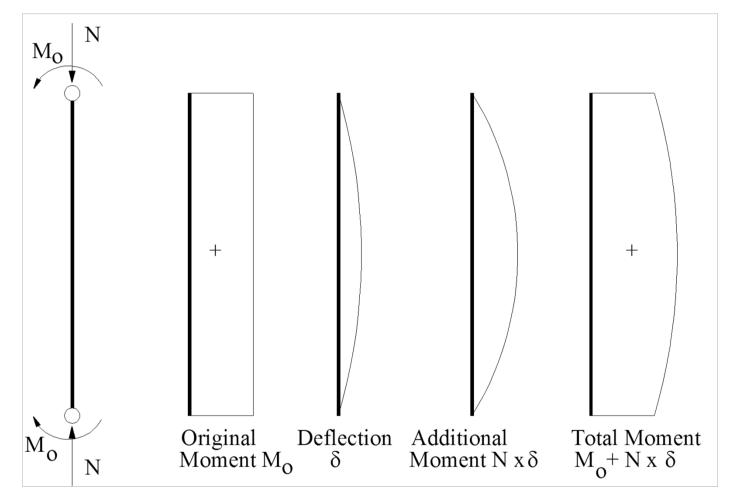
F,

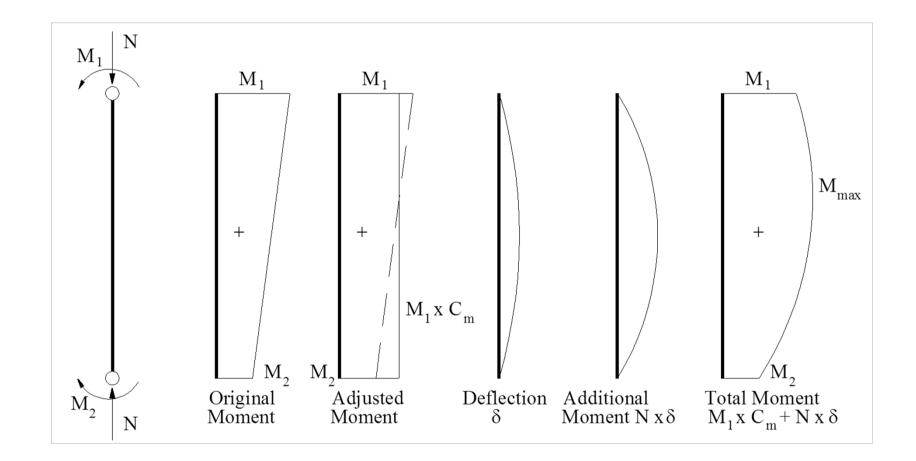

23/√F.


< 21/√F.



W. Section Classification


- Stiffened Flange
 - Subjected to uniform compression
 - Same limits as Beams and Columns



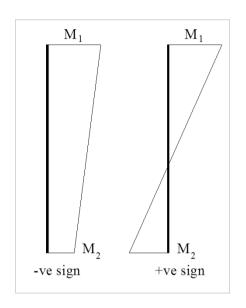
- The applied Bending Moment Produces A deflected Shape
- The Normal Force Produces Additional Bending Moment due to the Deflected Shape that should be added to the Original Bending Moment (Second Order Effect)

 $M_{Total} = M_o + N \times \delta = A \times M_o$

$$M_{Total} = M_1 \times C_m + N \times \delta = C_m \times A \times M_1 = A_1 \times M_1$$

• A = Amplification Factor

$$A = \frac{1}{1 - \frac{P}{P_{E}}} = \frac{1}{1 - \frac{f_{ca}}{f_{EX}}}$$


- P = Actual Normal on Column
- P_E = Euler Buckling Load of Column
- f_{ca} = actual axial stress on Column
- f_{EX} = Euler Stress

$$F_{EX} = \frac{7500}{\left(\begin{array}{c} L_{x} \\ \end{array}\right)^{2}}$$

- C_m = Moment modification factor
 - Frames prevented from side sway without transverse loads

$$C_m = 0.6 - 0.4 \frac{M_2}{M_1} > 0.4 \quad (M_1 > M_2)$$

- Frames prevented from side sway with transverse loads
 - Fixed at ends $C_m = 0.85$
 - Simply supported $C_m = 1.0$
- Frames permitted to sway $C_m = 0.85$

VI. Check of Stresses

$$\frac{f_{ca}}{F_c} + \frac{A_1 \times f_{bx}}{f_{bcx}} + \frac{A_2 \times f_{by}}{f_{bcy}} \le 1.0$$

- f_{ca} = Actual axial stress = (N / Area)
- F_c = Allowable axial stress (column equations)
- f_{bx} = Actual bending stress about X (M_x / Z_x)
- f_{by} = Actual bending stress about Y (M_y / Z_y)
- f_{bcx} = Allowable bending stress about X (Beam equation)
- f_{bcy} = Allowable bending stress about Y (Beam equation)

$$A_{1} = \frac{C_{mx}}{1 - \frac{P}{P_{EX}}} = \frac{C_{mx}}{1 - \frac{f_{ca}}{f_{EX}}} \qquad \qquad A_{2} = \frac{C_{my}}{1 - \frac{P}{P_{EY}}} = \frac{C_{my}}{1 - \frac{f_{ca}}{f_{EY}}}$$

• If $f_{ca} / F_c < 0.15$ take A_1 and $A_2 = 1.0$

VII. Design Steps

- Determine Statical System:
 - Straining Actions (M, N, Q)
 - Determine Buckling Lengths (L_x, L_y, L_u)
 - Determine C_b and C_m
 - Deal with each braced segment as a separate beam column
- Selection of Section (Approximate Design)
 - Obtain approximate Z from applied bending. Note that the section is also subjected to Normal force (reduce the allowable stress)
 - Choose a section

$$Z_{req.} = \frac{M}{f_{all.} (1.0 t / cm^2)}$$

• Get properties (A, I_x , I_y , Z_x , Z_y , i_x , i_y , ...etc)

VII. Design Steps

- Determine section classification:
 - Compact
 - Non-compact
- Check Safety of Stresses
 - Determine actual stresses (f_{ca}, f_{bx}, f_{by})
 - Determine allowable stresses (f_c , f_{bcx} , and f_{bcy})
 - Calculate amplification factors (A₁, A₂)
 - Check safety of normal stresses
 - Check safety of shear stresses