

METALLIC STRUCTURES

COMPRESSION MEMBERS

TOPICS

- INTRODUCTION
- BEHAVIOR OF COMPRESSION MEMBERS
- CROSS SECTION TYPES
- STIFFNESS LIMITATION
- CONSTRUCTION CONDITION
- ALLOWABLE STRESSES
- ACTUAL STRESSES
- STEPS OF DESIGN
- EXAMPLES

INTRODUCTION

- •Compression Members are those subjected to PURE COMPRESSION forces.
- •Design procedure is similar to the design of Tension Members except for STABILITY (BUCKLING) phenomena.
- •There is a Stability Problem. The acting compression tends to bend the member off its straight alignment.

- •Because of the above the stiffness limit is very strict.
- Applications Truss members, Pin ended columns, knee bracing, ...

• For CONCENTRIC compression forces, the resulting stress is a uniform stress equally distributed over the member area.

$$f_{act} = \frac{C}{A}$$

• For bolted construction, the bolt shank is assumed to full the hole. Therefore, the gross area is always used in assessing the actual stress.

$$f_{c,act} = \frac{C}{A_g}$$

The well known moment-curvature relation

$$\frac{M}{EI} = -\frac{d^2 V}{d Z^2}$$
; Substituting M = P.V, Diff. equ. would be:

$$\frac{d^2 V}{d Z^2} + K^2 V = 0$$
; where $K^2 = P/EI$

The solution of the Equation:

$$V(Z) = A \sin KZ + B \cos KZ$$

wher A and B are constants depends on boundary conditions

For
$$V(0) = 0$$
 and $V(L) = 0$ Therefore $B = 0$ and $A \sin KL = 0$

For non-trivial solution $(A \neq 0)$ then:

$$K = \frac{n \pi}{L}, n = 1, 2, 3, ...$$
; or $P = \frac{n^2 \pi^2}{L^2}$. EI

Smallest Load, n = 1 thus
$$P_{crit.} = P_{Euler} = \frac{\pi^2 EI}{L^2}$$

• As the load increases, the stress increases. But failure generally occurs at a stress much lower that the yield stress. Failure is SUDDEN.

$$P_{\text{critical}} = \frac{\pi^2 E I}{(K L)^2}$$

- •K = buckling length factor
- •L = member length
- •E = Modulus of Elasticity
- •I = Section moment Inertia

Residual Stresses

 Due to the non-uniform cooling of section

• Due to that plastification of the section will start at the tips of flanges at stress below the yield stress.

ALLOWABLE STRESSES

• Case I Loading (Main Loads)

$$F_c = \frac{7500}{\left(\frac{KL}{i}\right)^2} \implies \frac{KL}{i} \le 100$$

$$F_c = 0.58F_Y - \frac{(0.58F_Y - 0.75)}{10,000} \times (\frac{KL}{i})^2 \implies \frac{KL}{i} \ge 100$$

$$(St.37 \rightarrow F_c = 1.4 - 0.000065 \times (\frac{KL}{i})^2$$

•Case II Loading (Secondary Loads)
Increase allowable stresses by 20%

(a) No reduction; (b) and (c) reduce 40%

ALLOWABLE STRESSES

For λ = slenderness ratio = $k\ell/r < 100$ (see Chapter 4 for definition of terms):

Grade	F _c (t/cm ²)		
of Steel	t ≤ 40 mm	40 mm < t ≤ 100 mm	
St 37	$F_c = (1.4 - 0.000065\lambda^2)$	$F_c = (1.3 - 0.000055\lambda^2)$	
St 44	$F_c = (1.6 - 0.000085\lambda^2)$	$F_c = (1.5 - 0.000075\lambda^2)$	
St 5?	$F_c = (2.1 - 0.000135\lambda^2)$	$F_c = (2.0 - 0.000125\lambda^2)$	

For all grades of steel:

For
$$\lambda = k\ell/r \ge 100$$
:

- Buckling length of any member needs to be evaluated in BOTH planes (in-plane and out-of plane)
- Buckling length about any Axis is the buckling length in the plane PERPENDICULAR to that axis.
- All truss joints are assumed as hinged (partial rigidity due to connection is neglected).
- In general, in-plane buckling length of a truss member = geometric length of the member.

Table (4.4) Buckling Length of Compression Members in Buildings and in Bridge Bracing Systems

Member		Out-		of-Plane	
		in-Plane	Compression Chord Effectively Braced	Compression Chord Unbraced	
Chords		ℓ	ℓ	0.75 span (Clause 4.3.2.2)	
<u>Diagonals</u> —Single Triangulated web system		l	l	1.2 ℓ	
-Multiple Intersected web rectangular system adequately connected		0.5 ℓ	0.75 l	e	

Table (4.4) Buckling Length of Compression Members in Buildings and in Bridge Bracing Systems (Cont.)

Member			Out-c	Out-of-Plane		
		In-Plane	Compression Chord Effectively Braced	Compression Chord Unbraced		
Diagonals -Multiple Intersected web trapezoidal system adequately		l	0.8 l d			
connected - K-system		ℓ	1.2 ℓ	1.5 ℓ		
Vertical members —Single triangulated web system	le le	l	l	1.2 ℓ		
-K-intersected web system		0.5 ℓ	(0.75+0,25 N _s)ℓ	$(0.90+0.30\frac{N_s}{N_L})\ell$		

N_s = Smaller value of compression force

N_L = Larger value of compression force

CROSS SECTION TYPES

STIFFNESS LIMITATION

$$\left(\frac{KL}{i}\right)_{\text{max}} \le 180$$

$$i = \sqrt{\frac{I}{A}}$$

Compute slenderness ratio in-plane and out of plane

Table(4.1) Maximum Slenderness Ratio for Compression Members

λ _{max}
180
200
90
110
140

STIFFNESS LIMITATION

CASE	SECTION OF MEMBER	i _x or i _v	i, or i,
1		i _* =0.3 a	7-
2	x - 1.5 : 1	i _x =0.28 b	i _y =0.48 a
3	x - 1.5 : 1		i,=0.3 a
4			i,=0.3 a

5		i.=0.2 a	,
6	b = 1.5 : 1	i _v =0.14 a	
7	a: b = 2: 1	i _v =0.1 a	
8		i v=0.385° a	

CONSTRUCTION CONDITION

• To allow for proper installation and tightening of bolts (use only in bolted connections).

$$a-t \ge 3d_b$$

ACTUAL STRESSES

Welded or Bolted Connection

$$f_{ca} = \frac{C}{A_g}$$

DESIGN STEPS

- Determine
 - •DF (Compression Force), Load Case (I or II)
 - •Member location, Length (L_g), Bolted or Welded
- Determine L_{in plane} and L_{out of plane}
- •Choose section type (1L, 2L back to back, 2L star shape).
- •Stiffness condition (get minimum "a")
- •Construction condition (bolted), (get minimum "a-t")
- •Obtain an approximate area

$$A_{app} = \frac{DF}{F_{all.} \times 0.6 \times 1.2}$$

Design Force (tons)	< 5	5-10	10-25	> 25
Allowable Stress F _C (t/cm ²)	0.6	0.75	0.8	0.95

o.6 (non symmetric section), 1.2 (if case II)

DESIGN STEPS

- •Choose a suitable section from tables
 - •Use minimum "a"
 - •Use A_{app}
- Check of Safety
 - Actual Stress
 - •Allowable Stress

$$f_{ca} = \frac{C}{A_g} \qquad F_c = f(\frac{KL}{i})$$

$$f_{ca} \le F_c$$

Tension - Compression Members

- •Start design with either tension or compression force
- Check safety for the other straining action based on the chosen section.
- •Use slenderness ratio of compression members in all cases.
- •In general
 - •If T > 2C start with the tension member design and check safety on the compression force
 - •If T < 2 C start with the compression member design and check safety on the tension force

Example (3.1):

Design a top compression member (A) if the design force D.F. = -28 tons (Case of loading II) and its length, l = 300 cms $(\phi = 20 \text{ mms}).$

Type of Cross Section:

The member being a top chord member : choose a symm. section (2 <8 back to back).

Buckling Length:

From figure $1_x = 1_y = 300$ cms choose 2 angles of equal legs back to back.

Stiffness Condition:

$$1 / i \le 180$$
, $i_{\chi} = 0.30$ a (Table 2.2)

. a
$$\geq \frac{300}{0.3 \times 180} \geq 5.56$$
 cms

Construction Condition:

 $(a-t) \ge 3 \phi \ge 6.0 \text{ cms}.$

Req. Approx. Area:
Assume
$$f_{av.} = 0.95 \text{ t/cm}^2$$
.

Check of Stresses and provisions for local buckling :-

$$\frac{\text{Try 2}}{\text{1}} < \frac{\text{5}}{\text{60x80x8}} A_{1<} = 12.30 \text{ cm}^2$$

b/t = 8.0/1.0 = 8.0 < 14.8 (Table 3.2) i.e. No local buckling

$$l_{x} / i_{x} = \frac{300}{0.30 \times 8} = 125 < 180 \text{ (o.k)}$$

$$F_e = \frac{7500}{(125)^2} \times 1.2 = 0.576 \text{ t/cm}^2$$

$$f_c = \frac{28}{2 \times 12.30} = 1.138 \text{ t/cm}^2 > F_c \text{ (unsafe)}$$

. Try 2 <8 (100x100x10)
$$h_{1<} = 19.20 \text{ cm}^2$$

$$l_x / i_x = \frac{300}{0.30 \times 10} = 100$$
 , , $F_c = \frac{7500}{(100)^2} \times 1.2 = 0.9 \text{ t/cm}^2$

$$\rm f_{_{\rm C}}$$
 = 28 / (2 x 19.2) = 0.73 t/cm 2 < $\rm F_{_{\rm C}}$. . Safe and economic