

METALLIC STRUCTURES

TENSION MEMBERS

Ahmed F. Hassan & Hesham Hamed Professors of Steel Structures and Bridges Faculty of Engineering, Cairo University

TOPICS

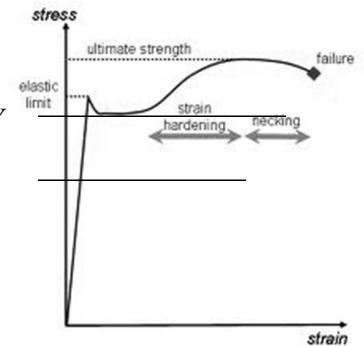
- INTRODUCTION
- BEHAVIOR OF TENSION MEMBERS
- CROSS SECTION TYPES
- STIFFNESS LIMITATION
- ALLOWABLE STRESSES
- ACTUAL STRESSES
- STEPS OF DESIGN
- EXAMPLES
- LOAD COMBINATIONS

INTRODUCTION

- •Tension Members are those subjected to PURE TENSION forces.
- •The most simple member to design.
- No Stability Problems.
- •To Design a tension member $f_{act} \leq f$

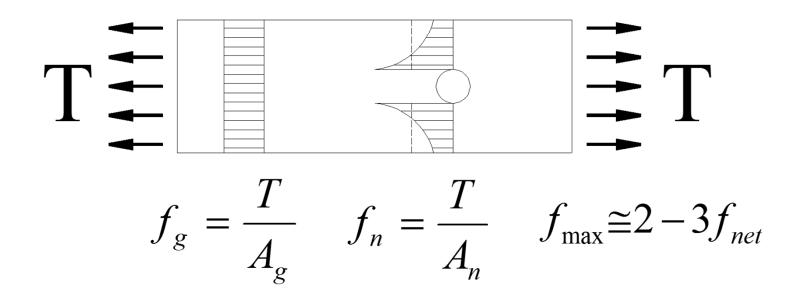
Select appropriate cross section area sop that the actual stress is less than the allowable stress

- A stiffness limit is set by codes to limit sagging and reduce vibration effects on slender members.
- Applications Truss members, hangers, ...

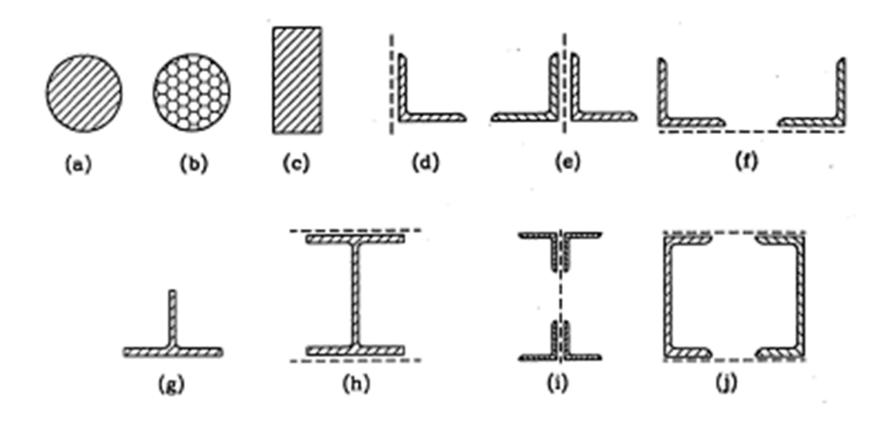

BEHAVIOR OF TENSION MEMBERS

• For CONCENTRIC tension forces, the resulting stress is a uniform stress equally distributed over the member area. *T*

 $f_{act} = \frac{I}{A}$


•The actual stress increases with the increase of the load according to the stress strain relationship

$$F_t = \frac{F_Y}{F.S.}$$



BEHAVIOR OF TENSION MEMBERS

• Stress Concentration due to holes

CROSS SECTION TYPES

STIFFNESS LIMITATION

$$\frac{L}{i_{\min}} \le 300$$

$$i = \sqrt{\frac{I}{A}}$$

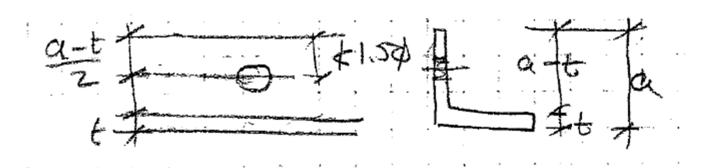
Where,

L = geometric length of member

 i_{min} = minimum radius of gyration of member shape

	Members	λ _{max}
Buildings	Tension members	300
	Tension members in railway bridges	160
Bridges	Tension members in railway bridges	180
	Vertical Hangers	300
	Bracing Systems	200

STIFFNESS LIMITATION


and the second second second second			
CASE	SECTION OF MEMBER	i _x or i _v	i, or i.
1		i _x =0.3 a	- - -
2	a: b = 1.5: 1	i _x =0.28 b	i _y =0.48 a
3	a : b = 1.5 : 1		i _y =0.3 a
4			i _y =0.3 a

5		i _v =0.2 a	
6	.: b = 1.5 : 1	i _v =0.14 a	
7	.: b = 2 : 1	i.=0.1 a	
8		i _* =0.385° a	 •o

CONSTRUCTION CONDITION

• To allow for proper installation and tightening of bolts (use only in bolted connections).

$$a-t \ge 3d_b$$

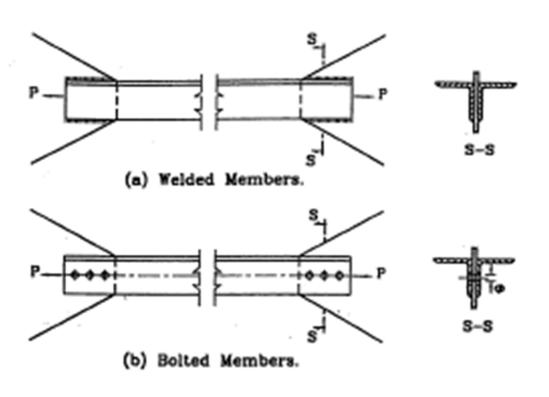
ALLOWABLE STRESSES

• Case I Loading (Main Loads)

$$F_{t} = \frac{F_{Y}}{F.S.} = 0.58 F_{Y}$$

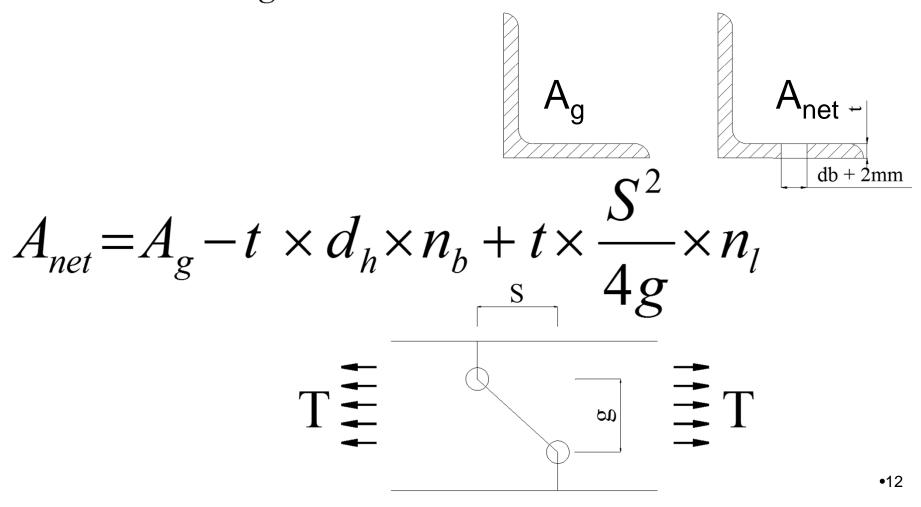
Steel Grade	$F_{Y}(t/cm^{2})$	$F_t(t/cm^2)$
St. 37	2.4	1.4
St. 44	2.8	1.6
St. 52	3.6	2.1

•Case II Loading (Secondary Loads) Increase allowable stresses by 20%


ACTUAL STRESSES

Welded Connection

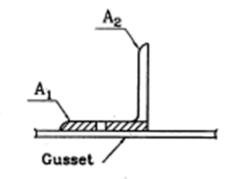
$$f_{ta} = \frac{T}{A_g}$$

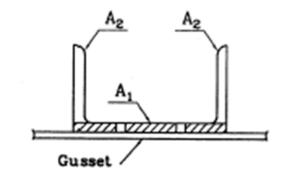

Bolted Connection

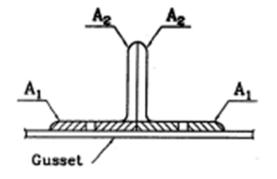
$$f_{ta} = \frac{T}{A_{net}}$$

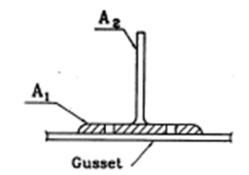
ACTUAL STRESSES

$$A_{net} = A_g - t_L \times (d_b + 2mm)$$




ACTUAL STRESSES


For Eccentrically Loaded Members


$$A_{eff} = A_1 + RF \times A_2$$

$$RF = \frac{3A_1}{3A_1 + A_2}$$

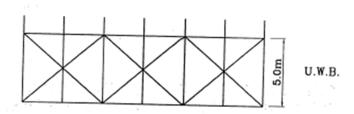
DESIGN STEPS

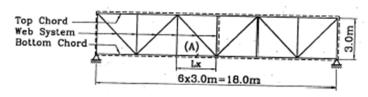
- Determine
 - •DF (tension Force), Load Case (I or II)
 - •Member location, Length (L_g), Bolted or Welded
- •Choose section type (1L, 2L back to back, 2L star shape). Then get i_{min} (0.2a, 0.3a, 0.385a)
- •Stiffness condition (get minimum "a")
- Construction condition (bolted), (get minimum "a-t")
- •Obtain an approximate area

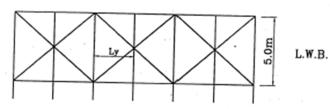
$$A_{app} = \frac{}{0.58F_Y \times 0.85 \times 0.75 \times 1.2}$$

o.85 (net area if bolted), o.75 (effective area if unsymmetric), 1.2 (if caseII)

DESIGN STEPS


- •Choose a suitable section from tables
 - •Use minimum "a"
 - •Use A_{app}
- Check of Safety
 - Actual Stress
 - •Allowable Stress


$$f_{ta} = \frac{T}{A_{net,eff}}$$


$$f_{ta} \leq F_t$$

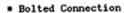
Example (2.1):

Design the lower chord tension member (A). Design force = 30.0 tons (Case of loading II) ometric length of the member is 300 cms (ϕ = 16 mms for bolted connections.

Solution

Type of Cross - Section:

- . The member being a bottom chord member, choose 2 < s back to back.
- . Buckling lengths; $L_x = L_y = 3.0 \text{ ms}$, choose 2 < s with equal legs.


Stiffness Condition:

$$1_{x} / 1_{x} \le 300$$
 ... $a \ge \frac{300}{0.3x300}$

(tension member).

$$i_x = 0.3 \text{ a (} 2 < \text{s} \quad \text{. `. a } \ge 3.33 \text{cms}$$

(back to back equal legs) See Table 2.1

Construction Condition:

 $(a-t) < 3 \phi < 4.80 \text{ cms}$

Required Cross - Section:

(Approximate)

Truss

$$A_{\text{req.}} = \frac{30.0}{2 \times 1.40 \times 1.2 \times 0.85}$$

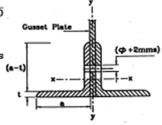
$$1 < \text{gross} \uparrow \qquad \qquad \text{wind stress}$$

$$2 < \text{all.}$$
stress

$$A_{\text{req.}} = \frac{10.50 \text{ cm}^2}{1}$$

. Check on Stresses:

From stiffness & construction conditions and required cross section;


$$A_{1<} = 11.0 \text{ cm}^2$$

$$A_{\text{net}} = 2 \left[11.0 - (1.60 + 0.2) \times 0.90 \right]$$
$$= 18.76 \text{ cm}^2$$

= 18.76 cm²

$$f_t = \frac{30}{18.76} = 1.599 \text{ t/cm}^2$$

$$f_t = \frac{30}{2 \times 9.40} = 1.595 \text{ t/cm}^2$$

Welded Connection

no construction condition

Required Cross - Section:

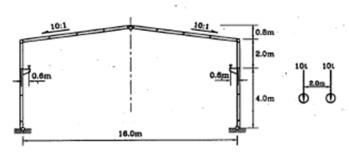
$$A_{req.} = 8.93 \text{ cm}^2$$

.Check on Stresses:

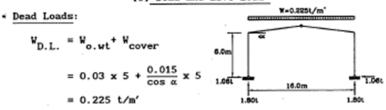
From stiffness condition and required cross section;

Choose
$$2 < 70 \times 70 \times 7$$

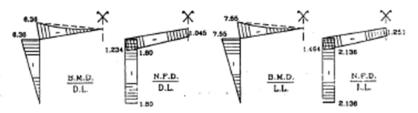
 $A_{1<} = 9.40 \text{ cm}^2$


$$f_1 = \frac{30}{2 \times 9.40} = 1.595 \text{ t/cm}^2$$

Case of Loading	Allowable Stress
Case (I):	
Dead = Live + Crane Vertical & dynamic effect	f
Case (II):	
Case (I) + Crane lateral shock + Wind + Earthquake + Temperature + etc	f*1.2


Example (1.1): Frame system

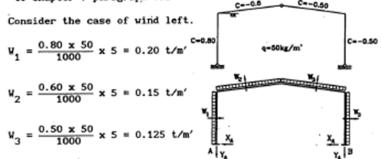
For the shown frame system:


- Spacing between frames = 5.0 ms
- Panel = 2.0 ms (spacing between purlins)
- Roof cover = corrugated sheets weighting 15 kgm/m2
- Own weight of steel = 30 kgm/m² of covered area.
- Crane loads : the maximum reaction of Crane concentrated loads 10 tons, each spaced at 2.0 ms.

(1) Dead and Live Load

 Live Loads: (Refer to clause 1.5 and Figure (5-1) of E.C.P. of steel constructions 1999)

According to the E.C.P, the roof is inaccessible ,tana = 0.1

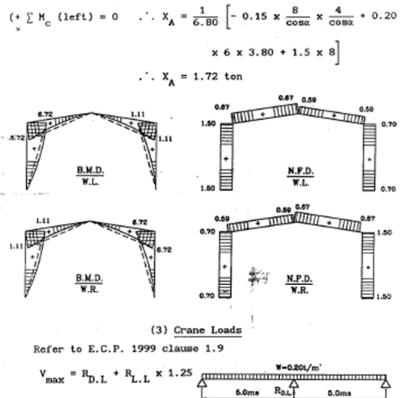

.'.
$$I_u = 53.33 \text{ kgm/m}^2$$

.'.
$$W_{11} = 0.053 \times 5 = 0.267 \text{ t/m}'$$

(2) Wind Loads

Refer to E.C.P. 1999 clause 1.12 item "II"

or to chapter 7 paragraph 7.5



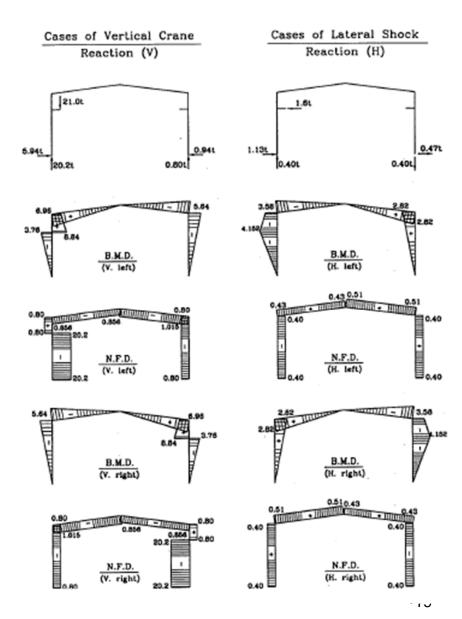
 $(+ \sum_{A} H_{B} = 0 ... (0.2+0.125)x6x3 + (0.125-0.15) \times \frac{8}{\cos \alpha} \times \sin \alpha \times 6.40$ $+ 0.125 \times \frac{8}{\cos \alpha} \times \cos \alpha x4 + 0.15 \times \frac{8}{\cos \alpha} \times \cos \alpha x12-y_{A}x16$ = 0.0

.'.
$$y_A = 1.5 \text{ ton}$$

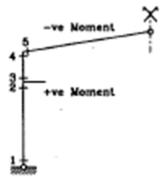
...
$$y_B = (0.125 + 0.15) \times \frac{8}{\cos \alpha} \times \cos \alpha - y_A$$

= 0.7 ton

$$(+\sum_{x}M_{c} \text{ (right)} = 0$$
 . . 0.125 x $\frac{8}{\cos\alpha}$ x $\frac{4}{\cos\alpha}$ + 0.125 x 6 x 3.80
- 0.7 x 8 = X_{B} x6.80
. . X_{B} = 0.19 ton


V_{max} = R_{D.L} + R_{L.L} x 1.25 R_{D.L} = 0.20 x 5.0 = 1.0 ton

R_{L.L} = 10 + 10 x $\frac{3}{5}$ = 16 tons


... V_{max} = 1 + 16 x 1.25 = 21.0 tons

R_{L.L} = 0.10 x R_{L.L} = 0.10 x 16 = 1.60 ton

To take into acount the dynamic effect of the electrical overhead crane the live load is to be increased by 25% according to E.C.P. 1999 clause 1.9 - (i.e. $R_{L.L}$ is to be multiplied by 1.25)

3			L.L.	Crane Left			Crane Right			Wind		Max. M		Max. N	
Se	c.	D.L.		v ·	н —	н —	v	н	H	Left	Right	+ve	-ve	+ve	-ve
	М	0	0	0	0	0	0	0	0		. 0				
1	N	-1.80	-2.14	-20.2	-0.40	0.40	-0.80	0.40	-0.40	1.50	0.70				-24.14 (l)
	м	-4.24	-5.03	-3.76	-4.52	4.52	-3.76	4.52	-4.52	4.30	0.90	0.82 (II)	~17.55 (II)		-13.03
2	N	-1.80	-2.14	-20.2	-0.40	0.40	-0.80	0.40	-0.40	1.50	0.70	-20.63	-24.54		-24.14 (l)
3	М	-4.24	-5.03	8.84	-4.52	4.52	-3.76	4.52	-4.52	4.30	0.90	13.42	-13.03 (1)	13.42	-13.03
	N	-1.80	-2.14	08.0	-0.40	0.40	-0.80	0.40	-0.40	1.50	0.70	0.37	¬4.74	0.37 (II)	-4.74 (1)
	М	-6.36	-7.55	6.96	-3.58	3.58	-5.64	3.58	-3.58	6.72	1.11	10.90 (II)	-19.55 (1)	9.44	-19.55
4	N	-1.80	-2.14	0.80	-0.40	0.40	-0.80	0.40	-0.40	1.50	0.70	0.37	-4.74	0.37	-4.74 (I)
5	М	-6.36	-7.55	6.96	-3.58	3.58	-5.64	3.58	-3.58	6.72	1.11	10.90 (II)	-19.55 (I)		-19.55
	N	-1.234	-1.464	-0.86	0.43	-0.43	-1.015	-0.43	0.43	0.67	0.59		-3.713		-3.71 (I)

