Introduction To Matlab Features and

 Capabilities
MATLAB Main Components

Built-in Functions

- Computations
- Graphics
- External interface (dll and mex-files)
- Computer controlled hardware

External Functions or Tool Boxes

- Signal Processing
- Image Processing
- Simulink Control Design
- Statistics Toolbox
- Communications
- Image Acquisition
- Control System
- Image Processing
- Optimization
- Symbolic mathematics
- and many more

9/2/2012

MATLAB Main Features

- Variables are inherently arrays
- Detects variable type (real or complex) and chooses correct operator
- Variables are case-sensitive
- No dimension statements are required
- Very efficient in manipulating matrices
- Performs array and matrix operations in a single command
- Very inefficient in working with do "loops" and "if" statements
- Slower execution language, relative to Fortran and C
- Provides an extensive collection of graphics and animation functions
- M-files: ASCII text files
- Mat-files: MATLAB binary files
- Mex-files: MATLAB callable Fortran and C programs
- Platform independent (PC, Mac, Unix)

Simple Math Operations in Matlab

Operation	Symbol	Example
addition, a+b	+	$3+4.2$
subtraction, a-b	-	$4-2.4$
multiplication, a $\cdot \mathrm{b}$	$*$	$3 * 5$
division, a / b	$/$	$56 / 8$
exponential function, a power b	\wedge	$2^{\wedge} 7$

Expressions are always evaluated from left to right with the following order:

Parenthesis are evaluated from innermost parenthesis to the 1- parenthesis
2- exponential function("^")

3- multiplication $(*)$, division $(/)$	$\begin{array}{l}\text { Use parenthesis as much as } \\ \text { possible for better readability }\end{array}$
4-	

4- addition (+), subtraction (-) possible for betlability.

Matlab Variables

- Variable names case sensitive and may contain up to 31 characters.
- Variables must start with a letter followed by character(s), number(s) or under score.
- Punctuation marks are not allowed in the variable names. \qquad
- Matlab has some built in variables, some of them are

Special variables	Description
pi	Ratio of circumference to diameter of a circle (22/7)
i (and) j	Square Root (-1)
nargin	Number of function input arguments used.
nargout	Number of function output arguments used.

\qquad
\qquad
\qquad

Note that:

- Values stored in a variable is erased when a new value is assigned to it.
- Special variables can be assigned any value but when Matlab is restarted or after execution of the clear command the original values are restored.

Other Features of Matlab Programming

- A comment can be written by using a "\%" at the beginning of the comment.
Example: $\quad \mathbf{a}=4 \%$ Radius of a circle.
- Two or more Matlab statements can be placed on the same line if they are separated by a comma "," or a semicolon";". \qquad
- A semicolon after a statement suppresses the value to be printed at the command line.
Example: $\quad a=5$; (value of a is not displayed in the command window) $a=5$ (value of a is displayed in the command window)
- To stop the Matlab processing, press "Ctrl + C".
\qquad
\qquad
\qquad
\qquad

Matlab Workspace

Matlab remembers the commands and variables as they are typed in a workspace called "Matlab Workspace".
The command "who" displays all the variables present in the workspace at any instant of time.

- The cursor arrows can be used at the command prompt to scroll through the commands typed in the particular session.
- The command "clear" deletes the variables present in the workspace. Example:
Type " $a=3, b=4$ " at the command prompt.
Type "who" at command prompt (that will displays the variables present in the session)
Scroll "UP" arrow key of the keyboard (the commands typed earlier are displayed at the command prompt)
Now type ' a " and press enter (value of " a " is displayed)
Now type "clear" (clears the variables present in the memory)
For a check now type "who" (nothing is displayed).

Getting Help For Matlab Programming

\qquad
\qquad
On-line Help

- help
lists topics on which help is available
- helpwin opens the interactive help window
- helpdesk opens the web browser based on help facility
- help topic provides help on topic
- lookfor string lists help topic containing string
- demo Runs the demo program

Additional information can be found at http://www.Mathworks.com

More General Commands

Directory Information:	
pwd	shows the current working directory
cd	changes the current working directory
dir	lists the contents of the current directory
Is	lists the contents of the current directory, same as dir
path	gets or sets MATLAB search path
editpath	modifies the MATLAB search path
copyfile	copies a file
mkdir	creates a new directory
General Information:	
computer	tells you the computer type you are using
clock	gives you the wall clock time and date as a vector
date	tells you the date as a string
more	controls the paged output according to the screen size
flops	shows the number of floating point operations used so far
ver	gives the license and version information about MATLAB

9/2/2012

Creating 2D Plots in Matlab

\% Generating 2D Plot
$\mathrm{ft}=\cos (10 \mathrm{e} 5 . \star \mathrm{t} 1) ; \quad$ \% Generate a function of time
$\mathrm{ft}=\mathrm{ft} . \mathrm{*}^{\exp (-t 1) ;} \mathrm{ft}$ (
plot(t1(:),ft(:),'r-'); \% Plots function vs. time

Creating Polar Plots in Matlab

\% Polar Plot of Function
t=linspace (0,2*pi,200) ; \% Generate Angle Array $r=s q r t(a b s(2 * \sin (5 . * t)))$; \% Radius (functio polar (t, r); \% Plot of radius vs. angle

Syntax: polar(t,r);

\qquad
\qquad
\qquad
\qquad

Adding Legends, Labels, and Titles in Matlab
Main Title: $\quad \operatorname{plot}(x, z a m p x)$; Title ('Pattern Parallel to X axis');
\qquad
\qquad

Labels: $\quad \operatorname{plot}(\mathrm{x}, \mathrm{zampx})$; Title ('Pattern Parallel to X axis'); \qquad xlabel('X values'); ylabel('Amplitude');

Legends: plot(xlo,E15(501:1001),'r-.'); plot(xlo,E3(501:1001),'b-'); $\operatorname{plot}\left(x l o, E 45(501: 1001), \mathrm{k}-\mathrm{-}^{\prime}\right)$); Generate 3 Plots legend(' $\mathrm{t}=1.5 \mathrm{~ms}^{\prime}, \mathrm{t}=3 \mathrm{~ms}^{\prime}, \mathrm{t}=4.5 \mathrm{~ms}$ '); \longleftarrow Add Legend

Creating 3D Plots in Matlab

Syntax: figure; $\operatorname{surfc}(E y)$; \longleftarrow Surface Plot with a 2D Array title('Ey Field Components'); xlabel('X Axis'); ylabel('Y Axis');

Creating Subplots in Matlab

Synxax: $\operatorname{subplot}(2,1,1), \operatorname{plot}(\operatorname{tarray}(:), \operatorname{cbd}(:)) \longleftarrow$ First Plot subplot $(2,1,2)$, plot(tarray(:),error(:) $)_{\longleftarrow}$ Second Plot
Number of Rows, Number of Columns, Plot Number

Creating JPEG Output for Figures in Matlab

\qquad
\qquad
\qquad
\qquad

Creation of Publication Quality Figures in Matlab

- To create figures in Matlab, that are suitable for reports and general publications, do the following: \qquad
create a file called Setfigures.m with the following code:
set(0,'DefaultAxesFontSize',18)
set(0, DefaultLineLine Width',2)
set(0,DefaultTextFontSize',18)
run that file before plotting a figure by typing: Seffigures at the Matlab prompt (make sure youre in the right directory) or include it at the beginning of your m-file by typing: Setfigures at the beginning of your file, before any figures are plotted
After your figures are ploted on the screen, save them to eps format by selecting the figure and typing the following at the Matlab prompt:
save-deps filename.eps \% for black and white
save -depss filename.eps $\%$ for color
or save them to tiff format by selecting the following figure menu options: file->export->Save as type: TIF image->type in filename->Save
or if you need smaller graphics (half the size), save as a jpg: file->export-Save as type: JPEG image--type in filename$>$ Save
When plotting multiple data sets on the same figure, use different line shapes and colors to distinguish the lines, since almost all publications are in black and white.
\qquad
\qquad
\qquad
\qquad

Reading Data from a File

Matlab M File Functions

Matlab has the ability to be programmed by creating scripts or a text file of commands that Matlab can run when called. Usually each script represents a function. An example is shown below:
function [khi,gamma]=polarization(ax, ay, delta)
\% returns the rotation angle, gamma, and the eplipticity angle, khi in degrees \% ax and ay are scalars while delta is the phase angle difference in degrees deltar=delta ${ }^{*}$ pi/180
gammar $=1 / 2^{*}\left(\operatorname{atan}\left(\left(\tan \left(2^{*} \mathrm{psir}\right){ }^{*} \cos (\right.\right.\right.$ deltar $\left.\left.\left.)\right)\right)\right)$;
khir $=1 / 2 * \operatorname{asin}(\sin (2 * \mathrm{psir}) * \sin ($ deltar $)$);
khi $=180$ *khir/pi;
\% convert from radians to degrees
gamma=180*gammar/pi;
if $\cos ($ deltar $)>0$ \& gamma<
gamma=gamma+90;
elseif $\cos ($ deltar $)<0 \&$ gamma >0
gamma=gamma-90;
else
gamma=gamma;
end
9/2/2012

Writing Functions in Matlab

1. Create a new m-file named functionname.m
2. Write function as follows: Return Value

$$
\text { function }[\text { ret } 1, \text { ret2 }]=\text { functionname } 1(x) \text {; }
$$

or
function [ret] = functionname $2(\mathrm{x})$;
\% Write the mathmatical operations here
ret $=\sin (\mathrm{x}) / \mathrm{x}$;
$\%$ That is it!
3. Make sure functionname.m is in MATLAB's search Path
4. Here is how to use this function in your Matlab program
$[a, b]=$ functionname $1(m) ; \quad a \ggg$ ret $1, b \ggg$ ret 2 $\begin{array}{ll}\text { xnew }=\text { functionname } 2(\mathrm{~m}) ; & \text { a } \ggg \text { ret } 1, \mathrm{~b} \text { b } \ggg>\text { ret } 1\end{array}$

The Commands "path" and "addpath"

- Path command allows for access to Matlab search path
- To add a path to the search paths use the following command: path ('newpath', path) which adds a "newpath" directory to the current Matlab search path
- This will ensure that Matlab looks at your directory, "newpath" before using the other default directories
- The faster and safer way is to use the addpath command. To add your path "newpath" use addpath like this:
addpath ('newpath') which adds this specified directory to MATLAB's current search path
addpath ('dirI','dir2','dir3',...) adds all the specified directories to the path. \qquad

Example \# 1

Consider an isotropic radiator located at the origin $(0,0,0)$ of a three dimensional space. Calculate the radiation over the area $-2<=\mathrm{x}<=2,-3<=\mathrm{y}<=3$, where the grid points are located at \qquad
$-2,-2+\Delta x, \ldots,-\Delta x / 2, \Delta x / 2, \ldots, 2-\Delta x, 2$ for x and
$-3,-3+\Delta y, \ldots,-\Delta y / 2, \Delta y / 2, \ldots, 3-\Delta y, 3$ for y.
Choose Δx, and Δy to give you 20 and 30 points along the x and y axes, respectively. (hint: investigate the linspace command).
\qquad
Create 3-D charts for the radiation

a) magnitude phase
c) real part
:---
and 2-D charts for the magnitude of the radiation
e) parallel to the x -axis at $\mathrm{y}=5.5 \Delta \mathrm{y}$
f) parallel to the y -axis at $\mathrm{x}=\Delta \mathrm{x} / 2$

The radiation pattern is given by
where $k=2 \pi$, and R is the distance from the radiator.

\qquad
\qquad
\qquad

Functions you May Use For Example \# 1

1. Set a range var = begin: delta: end
2. Create a 2-D mesh $[X, Y]=\operatorname{meshgrid}(x, y)$
3. Convert from Cartesian to polar $[T h, R]=\operatorname{cart} 2 \operatorname{pol}(X, Y)$
4. Element-by-element matrix multiply and divide

$C=A .{ }^{*} B \quad D=A . / B$

5. Plot
$\operatorname{mesh}(a b s(z)), \operatorname{plot} 3(x, y, z), \operatorname{plot}(x, y)$
6. Use addpath to set path to your m-files directory

Solution to Example \# 1

clear all; close all; clc; $\mathrm{x}=1$ inspace $(-2,2,20)$;
$[X, Y]=$ meshgrid (x, y)
$[\mathrm{Th}, \mathrm{R}]=\mathrm{cart} 2 \mathrm{pol}(\mathrm{X}, \mathrm{Y})$;
$z=\exp (-j * 2 \star p i * R) \cdot / R$;
zamp=abs (z);
zphase=angle (z)*180/pi;
zreal=real (z); zimag=imag (z);
${ }^{8}$ 3D figures
h1=figure; mesh (zamp) 8 without x or y axes
h2=figure; mesh ($x, y, z, z a m p)$
h3 $3=$ figure; mesh (x, y, z phase
h4=figure; contour(x,y,zreal); Title ('Real part
h5=figure; $\operatorname{surf}(x, y, z i m a g)$,
Title (' Imaginary part')
8.2D figures
zampx $=$ zamp (21,: $) ; \quad \operatorname{ampx}=z a m p x$ ';
zampy $=$ zamp $(:, 11) ;$ ampy $=$ zampy ${ }^{\prime} ;$
h6=figure; plot (x, ampx);
h7=figure; plot (y, ampy),
Title('Pattern Parallel to Y axis');
xlabel('Y values'); ylabel('Amplitude');
print -djpeg90 fig2.jpg

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Homework \# 1

1-a) For the following two equations, $4 x-6 y=4$, and $10 x-8 y=24$, use Matlab matrix inversion function to find the values of x and y. Verify Matlab results with your analytical solution. \qquad

1-b) Create a surface plot and a contour plot of the function \qquad
$z=8 x e^{-\left[\left(2 x-4 y^{2}\right)^{3}+6 x^{2}\right]}$ for $-1 \leq x \leq 1$ and $-1 \leq y \leq 1$

1-c) Use Matlab to sketch the function
$v(t)=9 e^{-t / 2.5} \sin (3 \pi \mathrm{t})$ for $-4 \leq t \leq 6$
\qquad

End of Lecture \# 1

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Solution to Homework \# 1-a

1-a) For the following two equations, $3 x-4 y=5$, and $6 x-10 y=2$, use
Matlab matrix inversion function to find the values of x and y. Verify
Matlab results with your analytical solution.
\qquad

Program listing
Program output
\% AHW_1a
\% This program uses the matrix inverse function
$\%$ to find the values for x and y.
A =
\% By Dr. Atef Elsherbeni
\% Last update August 25, 2004
$\begin{array}{ll}6 & -10\end{array}$
clear all;
$\mathbf{A A}=$
$A=[3,-4 ; 6,-10]$
$1.0000-\mathbf{0 . 5 0 0 0}$
$\mathrm{AA}=\operatorname{inv}(\mathrm{A})$
$\mathrm{B}=[5 ; 2]$
XandY= 7.0000

XandY $=A A^{*} * B$

Solution to Homework \# 1-b

1-b) Create a surface plot and a contour plot of the function

$$
z=x e^{-\left[\left(x-y^{2}\right)^{2}+y^{2}\right]} \text { for }-2 \leq x \leq 2 \text { and }-2 \leq y \leq 2
$$

\qquad
\% AHW_1b

\% Last update August 25,2004

Solution to Homework \# 1-c

1-c) Use Matlab to sketch the function

$$
v(t)=10 e^{-t / 0.3} \sin (\pi \mathrm{t}) \text { for } 0 \leq t \leq 2
$$

Then use Matlab to find the bounded by the function $v(t)$ and the t axis.
\qquad
$\%$ AHW_1c
unction v (i)
$\%$ Last update August 25,2004
clear all;
seffigures
setfigures \% defines default parameters for figures
$t=$ linspace($0,2,200$);
$\mathrm{v}=10^{*} \exp (-t / 3)$. ${ }^{*} \sin \left(\mathrm{pi}^{*} t\right)$;

format long
Area _using \quad quad $=$ quad($(0,0,2)$
Area_using_trapz $=\operatorname{trapz}(\mathbf{t}, \boldsymbol{v})$
$\mathrm{At}=$ cumtrapz (t, v);

plott(t,v,, r.t, t,A, 'b:')
title('Voltage and cumulative integral of Voltage versus time');
xlabel('time'); legend('v(t)', 'Integral [v(t)]')

Viewgraphs are Copyright © Dr. Atef Elsherbeni

Old Homework \# 1

Consider a radiator located at the origin $(0,0,0)$ of a three dimensional space Using the spherical coordinates system, calculate the radiation in the $x-y$ plane over the area $-3<=x<=3,-2<=y<=2$, where the grid points are located at
$-3,-3+\Delta x, \ldots,-\Delta x / 2, \Delta x / 2, \ldots, 3-\Delta x, 3$ for x and
$-2,-2+\Delta y, \ldots,-\Delta y / 2, \Delta y / 2, \ldots, 2-\Delta y, 2$ for y.
Choose $\Delta \mathrm{x}$, and $\Delta \mathrm{y}$ to give you grid points in the order of 20 and 30 along the x and y axes, respectively.

Create the following 3-D charts for the radiation pattern a) magnitude
b) phase
c) real part \quad d) imaginary part
and the 2-D charts for the magnitude of the radiation pattern at the plane
e) parallel to the x-axis at $y=1.5 \Delta y$
f) parallel to the y-axis at $x=-1.5 \Delta x$.

The radiation pattern is given by $\Rightarrow \frac{e^{-j k R}}{2 R}\left[1-\frac{2}{j k R}+\frac{j}{k R^{2}}\right]\left(2-\cos ^{2} \phi\right)$,

Trapezoidal Integration Function

Numerical Methods in Electromagnetics

 ENGR 626 or ENGR 597 - Fall 2004Part I: by Dr. Atef Elsherbeni, Finite Difference Techniques (50\%)
Part II: by Dr. Allen Glisson , Method of Moments (50\%)

References:

>Mastering Matlab 6, by Duane Hanselman and Bruce Littlefield, Prentice Hall, 2001.
$>$ Field Computation by Moment Methods, by Roger F. Harrington, IEEE Press 1993.
$>$ Computational Methods for Electromagnetics, by Andrew F. Peterson, Scott L. Ray, and Raj Mittra, IEEE Press, 1998.
$>$ Computational Magnetics, Edited by Jan K. Sykulski, Chapman and Hall, 1995. $>$ Numerical Techniques in Electromagnetics, by Matthew N. O. Sadiku, CRC Press, 2001.

Numerical Methods in Electromagnetics

ENGR 626 - Fall 2004

Part II- Method of Moments

Topics to be covered:

1. The equivalence principle and formulation of integral equations
2. Numerical solution of integral equations using the MoM .
3. Numerical solution of differential equations using the MoM.
4. Numerical evaluation of integrals.
5. The method of moments applied to general surfaces.
50% of Course Final Grade:
Homework
35\%
15\% Due December 5

Matlab M File Functions

- This is a simple function that we can use to learn the rules of programming for Matlab functions.
- File Name -- The file name of any function is the name of the file. So in our exampe function polarization the file name is polarization.m.
- Comment lines (denoted by the \%) up to the first noncomment line are displayed when you type help function. This will be very helpful in remembering the calling parameters and what each function does. For example
help polarization
returns the rotation angle, gamma, and the eplipticity angle, khi in degrees ax and ay are scalars while delta is the phase angle difference in degrees
- The function will terminate when it either reaches the end of the file or it encounter the command return.
Matlab is capable of doing recursion with functions.
- Functions can share global variables with the Matlab Command Window, othe Functions can share global variables with the Matlab Command Window, ot
functions and recursive calls to itself with the variable(s) declared as global.
- Functions can be nested. That is a function may contain a call to another function whether it be different or itself.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

