Introduction to Computational Electromagnetics Lecture 3: 2D Electromagnetic Scattering Part 2: The Magnetic Field Integral Equation

ELC 657 – Spring 2014

Department of Electronics and Communications
Engineering

Faculty of Engineering – Cairo University

Outline

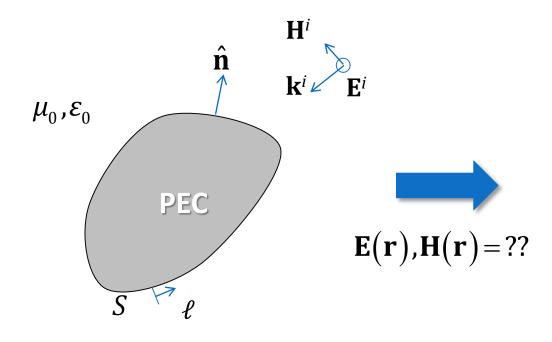
- 1 TM Polarization
 - Problem Formulation
 - MoM Procedure
 - Sample Results
- 2 TE Polarization
 - Problem Formulation
 - MoM Procedure
 - Sample Results

TM Polarization TE Polarization

Outline

- **1** TM Polarization
 - Problem Formulation
 - MoM Procedure
 - Sample Results
- TE Polarization
 - Problem Formulation
 - MoM Procedure
 - Sample Results

Equivalent Problem



$$\hat{\mathbf{n}}(\mathbf{r}) \times \mathbf{E}(\mathbf{r}) = \mathbf{0}, \ \mathbf{r} \in S$$

$$\hat{\mathbf{n}}(\mathbf{r}) \times \mathbf{H}(\mathbf{r}) = \mathbf{J}(\mathbf{r}), \ \mathbf{r} \in S^+$$

 $\hat{\mathbf{n}}(\mathbf{r}) \times \mathbf{H}(\mathbf{r}) = \mathbf{0}, \quad \mathbf{r} \in S^-$

It is required to find the scattered electric and magnetic electric field everywhere due to a conducting cylinder illuminated by a plane wave.

TE Polarization 5

Problem Formulation

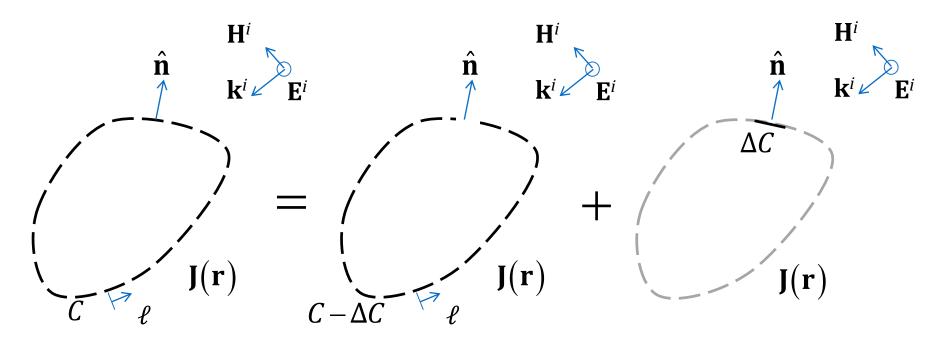
The Magnetic Field and Electric Current

$$\hat{\mathbf{n}} \times \mathbf{H}^{+} = \hat{\mathbf{n}} \times \left[\mathbf{H}^{i+} + \mathbf{H}^{s+} \right] = \hat{\mathbf{n}} \times \left[\mathbf{H}^{i+} + \mathbf{H}^{s+}_{ns} + \mathbf{H}^{s+}_{s} \right] = \mathbf{J}$$

$$\hat{\mathbf{n}} \times \mathbf{H}^{-} = \hat{\mathbf{n}} \times \left[\mathbf{H}^{i-} + \mathbf{H}^{s-} \right] = \hat{\mathbf{n}} \times \left[\mathbf{H}^{i-} + \mathbf{H}^{s-}_{ns} + \mathbf{H}^{s-}_{s} \right] = \mathbf{0}$$

$$\hat{\mathbf{n}} \times \left[\mathbf{H}_{s}^{s+} - \mathbf{H}_{s}^{s-}\right] = \mathbf{J} \qquad \Longrightarrow$$

$$\hat{\mathbf{n}} \times \mathbf{H}_s^{s\pm} = \pm \frac{1}{2} \mathbf{J}$$



Maue's Magnetic Field Integral Equation

$$\hat{\mathbf{n}} \times \left[\mathbf{H}^{i}(\mathbf{r}) + \mathbf{H}_{ns}^{s}(\mathbf{r}; \mathbf{J}) \right] = \frac{1}{2} \mathbf{J}(\mathbf{r}), \mathbf{r} \in S$$

$$-\frac{1}{2} \mathbf{J}(\mathbf{r}) + \frac{1}{\mu_{0}} \hat{\mathbf{n}} \times \nabla \times \int_{S-\Delta S} \mathbf{J}(\mathbf{r}') g(\mathbf{r}, \mathbf{r}') ds' = -\hat{\mathbf{n}} \times \mathbf{H}^{i}(\mathbf{r}), \mathbf{r} \in S$$

$$\nabla \times (\mathbf{J}g) = g \nabla \times \mathbf{J} - \mathbf{J} \times \nabla g$$

$$\nabla \times (\mathbf{J}g) = -\mathbf{J} \times \nabla g = \mathbf{J} \times \nabla' g$$

$$-\frac{1}{2} \mathbf{J}(\mathbf{r}) + \frac{1}{\mu_{0}} \hat{\mathbf{n}} \times \int_{S-\Delta S} \mathbf{J}(\mathbf{r}') \times \nabla' g(\mathbf{r}, \mathbf{r}') ds' = -\hat{\mathbf{n}} \times \mathbf{H}^{i}(\mathbf{r}), \mathbf{r} \in S$$

Problem Formulation

Operator Equation

$$\mathbf{J}(\mathbf{\rho}) = J_z(\mathbf{\rho})\hat{\mathbf{z}}$$

$$-\frac{1}{2}J_{z}(\mathbf{\rho}) + \frac{k_{0}}{4j} \int_{C-\Delta C} J_{z}(\mathbf{\rho}') \hat{\mathbf{n}} \cdot \hat{\mathbf{R}} H_{1}^{(2)}(k_{0}|\mathbf{\rho} - \mathbf{\rho}'|) d1'$$

$$= -H_{1}^{i}(\mathbf{\rho}), \qquad \mathbf{\rho} \in C$$

$$L\{J_z(\mathbf{\rho})\} = -H_1^i(\mathbf{\rho}), \ \mathbf{\rho} \in C$$

$$H_1^i = \hat{\mathbf{l}} \cdot \mathbf{H}^i = \frac{1}{\eta_0} \hat{\mathbf{l}} \cdot \hat{\mathbf{k}}^i \times \mathbf{E}^i, \ \boldsymbol{\rho} \in C$$

$$\int_{S} \int_{\ell} \mathbf{J}(\mathbf{r})$$

$$E_{z}^{i}(\mathbf{\rho}) = E_{0}e^{-j\mathbf{k}^{i}\cdot\mathbf{\rho}} = E_{0}e^{+jk_{0}(\cos\varphi^{i}x + \sin\varphi^{i}y)}$$

 \mathbf{H}^{i}

Based on the previous derivations, the MFIE formulation can be used only for closed objects.

The MoM Procedure

Expansion, Testing and MoM Matrix Equation

$$\Pi_{n}(\mathbf{\rho}) = \begin{cases} 1, & \mathbf{\rho} \in \Delta C_{n} \\ 0, & \text{otherwise} \end{cases} t_{m}(\mathbf{\rho}) = \delta(\mathbf{\rho} - \mathbf{\rho}_{m}) \qquad \hat{\mathbf{n}} \\ \sum_{n=1}^{N} I_{n} Z_{mn} = V_{m}, m = 1, 2, L, N \end{cases}$$

$$Z_{mn} = -\frac{1}{2} \delta_{mn} + \frac{k_{0}}{4j} \int_{\Delta C_{n}} \hat{\mathbf{n}}_{m} \cdot \hat{\mathbf{R}} H_{1}^{(2)} \left(k_{0} | \mathbf{\rho}_{m} - \mathbf{\rho}' | \right) d1' \qquad \mathcal{L}$$

$$V_{m} = -\frac{1}{n_{0}} E_{0} e^{+jk_{0} \left(\cos \varphi^{i} x_{m} + \sin \varphi^{i} y_{m} \right)} \left(\cos \varphi^{i} \hat{\mathbf{y}} - \sin \varphi^{i} \hat{\mathbf{x}} \right) \cdot \hat{\mathbf{l}}_{m}$$

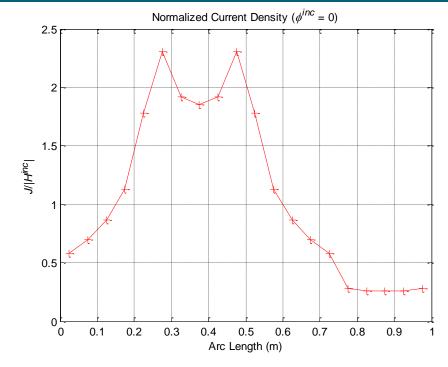
Notice that there are no singularity issues in this case. However, near-self terms may still need singularity extraction.

TE Polarization

Sample Results

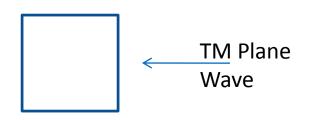
TM Polarization

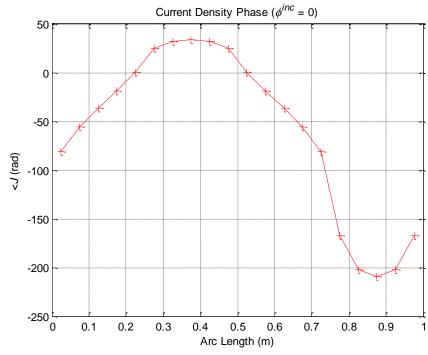
Sample Case 1: Quarter-Wavelength PEC Square



$$f = 300 \text{ MHz}$$

 $\lambda = 1 \text{ m}$



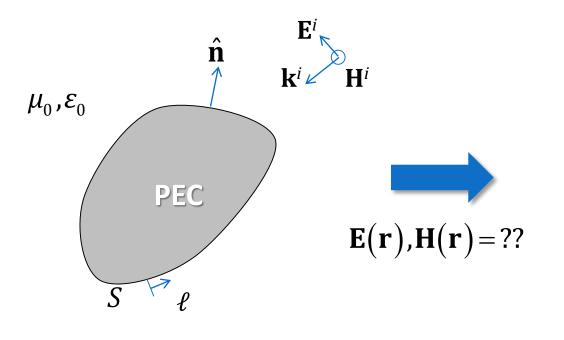


Outline

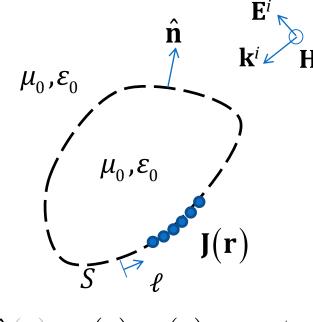
- 1) TM Polarization
 - Problem Formulation
 - MoM Procedure
 - Sample Results
- 2 TE Polarization
 - Problem Formulation
 - MoM Procedure
 - Sample Results

Problem Formulation

Equivalent Problem



$$\hat{\mathbf{n}}(\mathbf{r}) \times \mathbf{E}(\mathbf{r}) = 0$$
, $\mathbf{r} \in S$



$$\hat{\mathbf{n}}(\mathbf{r}) \times \mathbf{H}(\mathbf{r}) = \mathbf{J}(\mathbf{r}), \ \mathbf{r} \in S^+$$

 $\hat{\mathbf{n}}(\mathbf{r}) \times \mathbf{H}(\mathbf{r}) = \mathbf{0}, \quad \mathbf{r} \in S^-$

It is required to find the scattered electric and magnetic electric field everywhere due to a conducting cylinder illuminated by a plane wave.

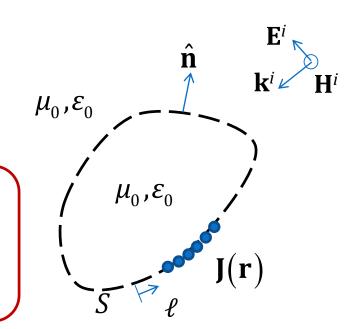
Problem Formulation

Operator Equation

$$\mathbf{J}(\mathbf{\rho}) = J_1(\mathbf{\rho})\mathbf{\hat{l}}$$

$$-\frac{1}{2}J_{1}(\mathbf{\rho}) + \frac{k_{0}}{4j} \int_{C-\Delta C} J_{1}(\mathbf{\rho}) \hat{\mathbf{n}}' \cdot \hat{\mathbf{R}} H_{1}^{(2)}(k_{0}|\mathbf{\rho} - \mathbf{\rho}'|) d\mathbf{1}'$$

$$= H_{z}^{i}(\mathbf{\rho}), \qquad \mathbf{\rho} \in C$$



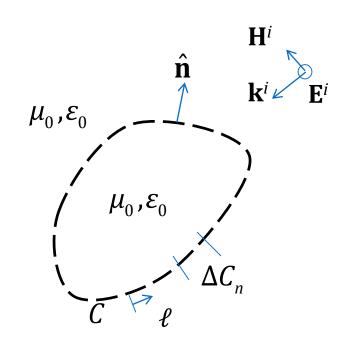
For TE polarization, the current has no axial component. Notice that a TE polarized wave can be also generated by an magnetic line source.

The MoM Procedure

Expansion using Vector Basis Functions

$$\Lambda_{n}(\mathbf{p}) = \begin{cases}
\hat{\mathbf{l}}_{n} \left(\frac{1_{n}}{\Delta l_{n}} + 1 \right), & \mathbf{p} \in \Delta C_{n} \\
\hat{\mathbf{l}}_{n+1} \left(1 - \frac{1_{n}}{\Delta l_{n+1}} \right), & \mathbf{p} \in \Delta C_{n+1} \\
0, & \text{otherwise}
\end{cases}$$

$$\mathbf{t}_{n}(\mathbf{\rho}) = \begin{cases} \hat{\mathbf{l}}_{n}, & \mathbf{\rho} \in \Delta C_{n}^{(2)} \\ \hat{\mathbf{l}}_{n+1}, & \mathbf{\rho} \in \Delta C_{n+1}^{(1)} \\ 0, & \text{otherwise} \end{cases}$$



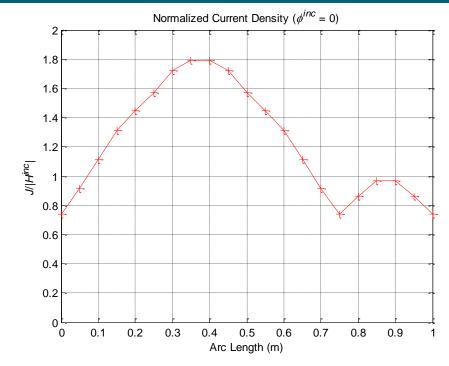
For basis functions that span multiple segments, there should be special treatment for closed objects to account for the last unknown. (Explain)

TE Polarization 14

Sample Results

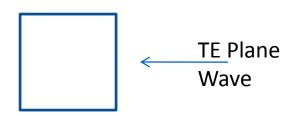
TM Polarization

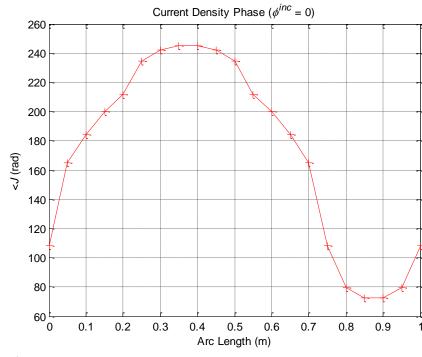
Sample Case 1: Quarter-Wavelength PEC Square



$$f = 300 \text{ MHz}$$

 $\lambda = 1 \text{ m}$





TM Polarization TE Polarization 15

Assignment #5

Repeat Assignment #3 using MFIE formulation.

TM Polarization TE Polarization 16

Assignment #6

Repeat Assignment #5 for TE polarization.

Conclusion

- MFIE formulation is obtained by enforcing the boundary condition on the discontinuous field component.
- The MFIE does not have singular kernels and thus needs no special treatment for self-terms.
- Comparing the EFIE and the MFIE shows that the latter yields a "better" matrix equation. However, the EFIE can handle both open and closed objects.