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Equivalent Problem

PEC

n̂

0 0,μ ε

S

It is required to find the electric potential everywhere in space due to a

PEC (cylinder) charged to a constant potential V0.

  0Φ ,V S r r

 Φ ??r  q r

0 0,μ ε

0 0,μ ε

n̂

S
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Potential In Terms of Charge Distribution

If the charge distribution q is known, then the potential can be computed.

But we don’t know q! What do we know about it?
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Operator Equation Formulation

The above operator (integral) equation should be solved to determine the

unknown charge distribution.

 q ρ

0 0,μ ε
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 in 2DS C
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Basis Function Expansion

How to choose the basis functions? 

Do we know anything about the charge behavior in this case?
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Geometry and Charge Discretization
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Point Matching

What happens in between the matching points?

Can the integrals be evaluated analytically?

What is the physical interpretation of smn?
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Assignment #1

Find a closed-form expression for the integral below and verify the

obtained expression for different values of the integral parameters.

ln
b

a
x x dx 
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MoM Matrix Equation

What matrix inversion procedure should be used? Direct, Gauss

elimination, LU decomposition, iterative …?

Where is the point of reference potential?

Is the obtained solution unique? What are the uniqueness conditions 

for electrostatics?

What is the problem of pulse expansion (compared to triangle basis)?

What quantities can be computed/plotted once the charge distribution

is determined?

0
1

, , 1,2, ,
N

n mn
n

q s V m n N


  L

1
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Convergence of Charge Distribution
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Convergence of Total Charge
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Assignment #2

Write a Matlab code to determine the linear charge distribution on a 

PEC strip of width 1m and charged to a potential of 1V. Then:

1. Plot the charge distribution on the strip for increasing number of

unknowns?

2. Study the convergence of the total charge with the number of 

unknowns and estimate the asymptotic total charge.

3. Plot the error in the potential distribution on the strip.

4. Plot the potential distribution in the region surrounding the strip.

5. Plot the electric field distribution in the same region.

6. Bonus: determine the location of the reference (zero-potential) point.

7. Bonus: use the symmetry to reduce the number of unknowns in 

your formulation.
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Error in Potential 
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Pulse Testing

Point matching results in potential distribution satisfying the boundary 

conditions at the matching points only.

The distribution deviates from the correct value in between these points.

It might be better to require that the boundary conditions be satisfied in

an averaged sense rather than at specific points.
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Different Possibilities

Pulse 
Basis

Delta-
function
Testing

Pulse 
Basis

Pulse 
Testing

Triangle 
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Delta-
function
Testing

Triangle 
Basis

Triangle 
Testing

Galerkin’s 
Procedure
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Theorem Statement

1û
2û

M

S

x

0m

0 e x m

0 M     e x m x m m

For any vector x in a Hilbert space H, there exists a unique vector m0

element of the sub-space M of H, such that :

0 M    x m x m m

Furthermore, a necessary and sufficient condition that m0 be the unique 

minimizing vector is that x-m0 be orthogonal to M.
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Theorem Applications

1û
2û

M

S

x

0m

0 e x m

0 M     e x m x m m

The projection theorem can be used to find “best approximations” in terms 

of linearly independent, but non-orthonormal basis vectors.
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Best Approximation

 1 2 Nx x x S x L

This is a system of simultaneous equations, which can be cast in matrix 

form and solved for the unknowns.

1

ˆ
M

m m
m

c


 x y x

 1 2, , , My y yL

ˆ , 0, 1,2, ,k k M  x x y L

Projection 
Theorem

1

, , , 1,2, ,
M

m k m k
m

c k M


  y y y x L
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Best Approximation

What are the special cases for the matrix above?

1 1 1 2 1 11

2 1 2 2 22

1 2

, , , ,

, , ,

, , , ,

M

M M M M MM

c

c

c

    
    
     
    
    

        

y y y y y y y x

y y y y y x

y y y y y y y x

L

M O M MM
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Example

Determine the best approximation of x in the subspace defined by the 

set {yn: n =1,2,3} for the following cases. Comment.

 4 2 1 2 x

 

 

 

1

2

3

1 0 0 0

0 0 1 0

0 0 0 1







y

y

y

 4 2 1 2 x

 

 

 

1

2

3

1 0 0 0

0 0 1 1

0 0 0 1







y

y

y
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Linear Operator: Definition

 Lf x

An operator L is a mapping that assigns to a vector x in S another vector

L{x} in S. The domain of the operator is the set of vectors for which the 

mapping is defined. The range of the operator is the set of all vectors that

could result from the mapping.

     1 1 2 2 1 1 2 2L a a a L a L  x x x x
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Linear Operator: Examples

    2 2L k  

Example 1:

In a source-free homogeneous region, the time-harmonic electric field

satisfies the equation L{E}=0, where L is the vector Helmholtz operator

     

    

,

1
,

V

V

L jωμ g dv

g dv
jωε

         

         





J r J r r r

J r r r

Example 2:

In an infinite homogeneous region with volume electric current distribution

J(r), the time-harmonic electric field is given by the equation E(r)=L{J(r)}, 

where L is defined as
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 Formulation of the operator equation (typically using the SE)
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 Selection of an appropriate “testing set”
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 Computing relevant quantities
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Basic Steps for Applying the MoM
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The operator equation will usually come directly from the physical 
situation or from some equivalent model.

The result is an operator equation of the form:
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Operator Equation Formulation

 L f g

Known Quantity 
(Excitation or 

Boundary
Conditions

Unknown 
Quantity (Current, 

Charge … etc.)
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Selection of Appropriate Basis/Testing Set (Method of Least Squares)

 L f g

1

N

n n
n

c


 f f f%

   
1 1

N N

n n n n
n n

L c L c
 

    g f f g w%

1

N

n n
n

c


 g w g%

, 0, 0,1, ,k k N  g g w% L

, , , 0,1, ,k k k N g w g w% L

 n nLw f

Unknown Quantity 
Expansion (Basis)

Known Quantity 
Expansion (Testing)
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Selection of Appropriate Basis/Testing Set (Moment Method)

 L f g

1

N

n n
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c


 f f f%
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Enforcing Equality of Projections

 
1

, , , 0,1, ,
N

k n n k
n

c L k N


 w f w g L

1,1 1,2 1, 1 1

2,1 2,2 2, 2 2

,1 ,2 ,

N

N

N N N N N N

Z Z Z c V

Z Z Z c V

Z Z Z c V

     
     
     
     
     

         

L

M O M M M

L

 , , ,kn k n k kZ L V w f w g

MoM Matrix
Equation

If the basis and testing functions are the same, this is called Galerkin’s 

projection technique.



The MoM is a mathematical procedure for solving integral, 
differential or integro-differential equations by expanding the 
unknown function using a set of basis function with unknown 
coefficients.

The result of the MoM is a matrix equation that should be solved 
to determine an approximate representation of the unknown 
function.
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Conclusion


