STRN 322 Construction Planning & Scheduling

Lecture 9: Project Control: Schedule and Cost Control

Hesham Osman Ph.D., Associate Professor Construction Engineering & Management, Cairo University

0

Measuring work progress

- During the execution of a construction project, the individuals executing it must periodically report the progress of each activity.
- The nature of each activity varies and hence each type has a suitable method for measuring progress
- The most convenient methods is to report the %complete for each activity
- There are several available methods to calculate an activity's % completion.....

Activity Percent Complete

• <u>Units complete:</u> Applies to activities that involve repeated production of easily measured work (e.g. concrete poring, pile driving, etc...)

% Complete = Units Complete / Total Units

• <u>Cost Ratio</u>: Involves activities that are budgeted based on a bulk allocation of dollars and involve a long time or are continuous during the life of a project (e.g. project management, quality assurance)

% Complete =

Actual cost (or hours) of work to date / forecast at completion

Activity Percent Complete

 Incremental Milestones: Applies to activities that include subtasks that must be handled in sequence. Each milestone is assigned a percentage as a rule of credit

Equipment Installation:

Receive & Inspect	15%
Setting Complete	35%
Alignment Complete	50%
Internals Installed	75%
Testing Complete	90%
Accepted by Owner	100%

Activity Percent Complete

• <u>Supervisor Opinion:</u> Applies to activities that require the subjective judgment of foreman or supervisors (e.g. Dewatering, landscaping, temporary construction).

Project Percent Completion

- Company management and owners may be more interested in knowing the overall percent completion for the entire project.
- This percentage must be reported "bottom-up" by aggregating the individual activity % completion

Project % complete = **∑** Activity % complete * Activity Weight

Project Percent Completion Example

Task	Budget	Weight	Bar Charts:	Actual	ersus Pla	inned	
А	\$30,000		100/	4004			1
В	\$20,000		10%	40% 70%	40%	10%	
С	\$10,000			70%			
D	\$40,000				40%		0.00()
Total	\$100,000		1	2	3	40%	60%; 5 Wee

= Planned = Actual

Project Percent Completion Example

Task	Weight		I	2	3	4	5
А	30%	Plan	0.333	0.666	1.0	1.0	1.0
		Actual	0.1	0.5	0.9	1.0	1.0
В	20%	Plan	0.25	0.75	1.0	1.0	1.0
		Actual		0.7	1.0	1.0	1.0
С	10%	Plan			0.25	0.75	1.0
		Actual			0.4	1.0	1.0
D	40%	Plan				0.5	1.0
		Actual				0.4	1.0

Project Percent Completion

	I	2	3	4	5
Plan	0.15	0.35	0.525	0.775	1.0
Actual	0.03	0.29	0.51	0.76	1.0

Earned Value

 The budgeted value of work completed during a time period

Task	Budget	I	2	3	4	5
А	30,000	3,000	12,000	12,000	3,000	
В	20,000		14,000	6,000		
С	10,000			4,000	6,000	
D	40,000				16,000	24,000
Earned V	alue	3,000	26,000	22,000	25,000	24,000

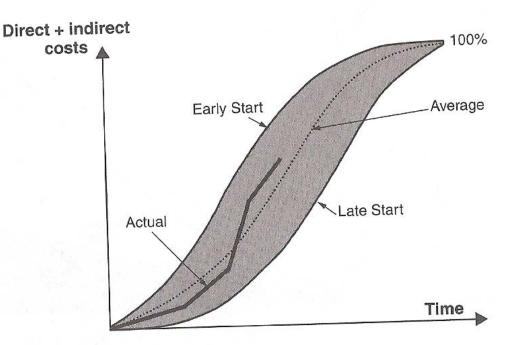
Cost and Schedule Control

- After calculating the percent completion for a project how can we evaluate our project management performance....
 - Are we behind schedule?
 - Are we over budget
 - Are we behind schedule <u>and</u> over budget?
- We will present three methods of evaluation:
 - S-Curve Method
 - Double S-Curve Method
 - Earned Value Analysis (EVA)

S-Curve Method

Draw an envelope for early and late planned costs

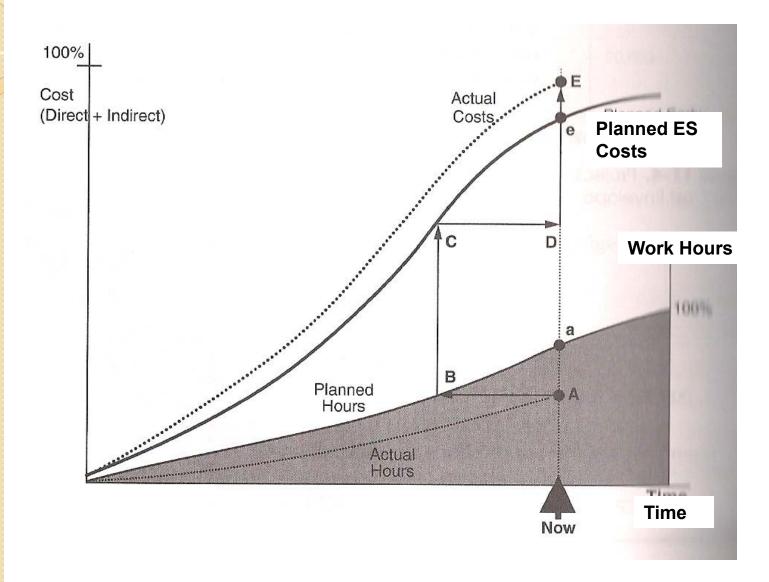
Plot the actual costs on the same figure


Disadvantage:

Not useful in analyzing project performance

If actual costs are more than planned costs what does this mean?

1- Are we spending more money than planned on activities?


2- Are we ahead of schedule?

Double S-Curve Method

- In order to better identify cost and schedule overruns we can draw two S-Curves
 - Cost S-Curve: Planned versus actual
 - Labor hours S-Curve: Planned versus actual

Double S-Curve Method

Double S-Curve Method

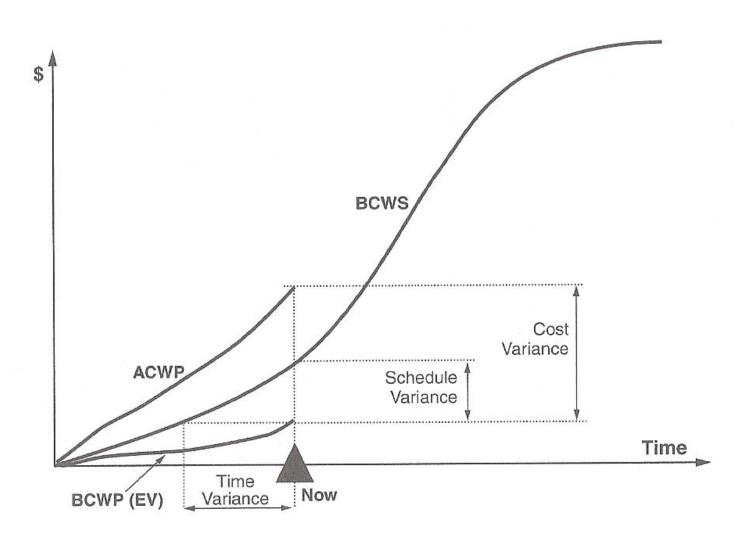
 Disadvantage: Produces conflicting conclusions on project cost performance

What is the cost overrun?

- I- Difference between points E and e
- 2- Difference between points E and D

I- Point B represents the time at which we planned to have spent the number of hours A.

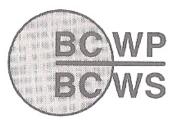
2- At time B we had planned to spend the amount C (or D)


Earned Value Analysis

In order to better identify variances in cost versus variances in schedule we define three key terms:

- Budget Cost of Work Scheduled (BCWS): The planned cost of work that was planned to be completed to date
- Budget Cost of Work Performed (BCWP): The planned cost of work that was actually completed to date
- Actual Cost of Work Performed (ACWP): The actual cost of work that was actually completed to date

Earned Value Analysis



Project experiencing a schedule delay and cost overrun

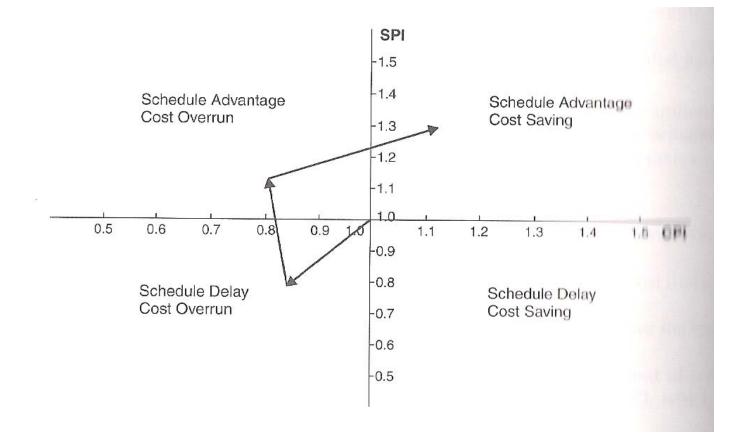
Using EVA we can develop project-specific performance indicators for cost and schedule

Schedule Performance Index (SPI) =

SPI > 1 \rightarrow Ahead of schedule SPI < 1 \rightarrow Behind Schedule

Cost Performance Index (CPI) =

CPI > 1 \rightarrow Cost saving CPI < 1 \rightarrow Cost overrun

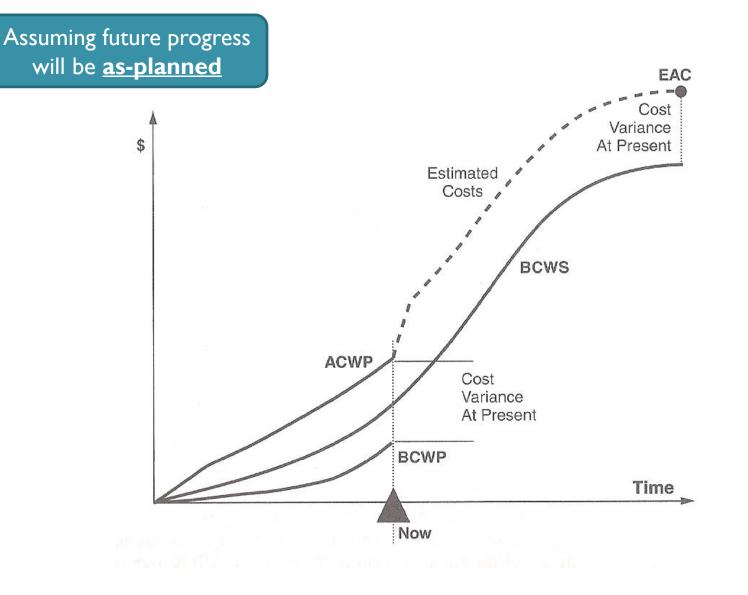

Other indicators:

Schedule Variance (SV) = BCWP – BCWS (SV>0 indicates ahead of sched.) Cost Variance (CV) = BCWP – ACWP (CV >0 indicates cost saving)

SPI/CPI Charts

By plotting the value of SPI and CPI on orthogonal axes we can visualize the progression of project performance

Forecasting Project Performance


- EVA gives us an instantaneous snapshot of project performance.
- In many cases we want to forecast future performance
- A commonly used indicator is the Estimate at Completion (EAC) that is used to forecast the expected cost at project completion
- There are 2 approaches to estimate EAC

Assuming future progress will be <u>as-planned</u> Assuming future progress will be <u>as performed so far</u>

EAC = Project Budget -CV at present

EAC = Project Budget / CPI

Forecasting Project Performance

Example

Act.	Budget		1	2	3	4	5	6	7	8
A	100,000	Planned			i					
				20.000	20.000	25.000	25.000	25.000		
		Actual Spent		20,000	30,000	25,000	25,000	25,000		
		% complete		20%	40%	60%	80%	100%		
В	360,000	Planned								
		Actual Spent				80,000	140,000	140,000		
		% complete				30%	70%	100%		
С	300,000	Planned								
		Actual Spent			100,000	100,000	100,000			
		% complete			40%	80%	100%			
D	140,000	Planned								
		Actual Spent					30,000	40,000		
		% complete					20%	25%		

Undertake earned value analysis on this project at the end of months 4 and 6. Calculate SPI, CPI, CV, SV and EAC.

What can you conclude about the project progress?