Fundamentals of Telecommunications Networks ECP 602

Eng. Rasha Samir

Electronics and Electrical Communications Dept.

Cairo University

Subnetting IP Networks

Lecture Objectives

Upon completion of this lecture, you will be able to:

- Explain why routing is necessary for hosts on different networks to communicate.
- Describe IP as a communication protocol used to identify a single device on a network.
- Given a network and a subnet mask, calculate the number of host addresses available.
- Calculate the necessary subnet mask in order to accommodate the requirements of a network.
- Describe the benefits of variable length subnet masking (VLSM).
- Explain how IPv6 address assignments are implemented in a business network.

Lecture Overview

Introduction Subnetting an IPv4 Network Addressing Schemes Design Considerations for IPv6 Summary Subnetting an IPv4 Network

Network Segmentation

Reasons for Subnetting

Subnetting is the process of segmenting a network into multiple smaller network spaces called subnetworks or subnets.

- Large networks must be segmented into smaller subnetworks, creating smaller groups of devices and services to:
 - Control traffic by containing broadcast traffic within each subnetwork.
 - Reduce overall network traffic and improve network performance.

Communication Between Subnets

- A router is necessary for devices on different networks and subnets to communicate.
- Each router interface must have an IPv4 host address that belongs to the network or subnet that the router interface is connected.
- Devices on a network and subnet use the router interface attached to their LAN as their default gateway.

IP Subnetting is FUNdamental The Plan

Planning the Network

Subnetting an IPv4 Network Basic Subnetting

- Borrowing Bits to Create Subnets
- * Borrowing 1 bit $2^1 = 2$ subnets

<u>Subnetting an IPv4 Network</u> Subnets in Use

Subnetting an IPv4 Network Subnetting Formulas

Subnetting an IPv4 Network Creating 4 Subnets

Borrowing 2 bits to create 4 subnets. $2^2 = 4$ subnets

Subnetting an IPv4 Network Creating Eight Subnets

Borrowing 3 bits to Create 8 Subnets. $2^3 = 8$ subnets

	Network	192.	168.	1.	000	0 0000	192.168.1.0
Net 0	First	192.	168.	1.	000	0 0001	192.168.1.1
	Last	192.	168.	1.	000	1 1110	192.168.1.30
	Broadcast	192.	168.	1.	000	1 1111	192.168.1.31
	Network	192.	168.	1.	001	0 0000	192.168.1.32
Net 1	First	192.	168.	1.	001	0 0001	192.168.1.33
	Last	192.	168.	1.	001	1 1110	192.168.1.62
	Broadcast	192.	168.	1.	001	1 1111	192.168.1.63
	Network	192.	168.	1.	010	0 0000	192.168.1.64
Net 2	Network First	192. 192.	168. 168.	1. 1.	010 010	0 0000 0 0001	192.168.1.64 192.168.1.65
Net 2	Network First Last	192. 192. 192.	168. 168. 168.	1. 1. 1.	010 010 010	0 0000 0 0001 1 1110	192.168.1.64 192.168.1.65 192.168.1.94
Net 2	Network First Last Broadcast	192. 192. 192. 192.	168. 168. 168. 168.	1. 1. 1. 1.	010 010 010 010	0 0000 0 0001 1 1110 1 1111	192.168.1.64 192.168.1.65 192.168.1.94 192.168.1.95
Net 2	Network First Last Broadcast Network	192. 192. 192. 192. 192.	168. 168. 168. 168. 168.	1. 1. 1. 1.	010 010 010 010 010	0 0000 0 0001 1 1110 1 1111 0 0000	192.168.1.64 192.168.1.65 192.168.1.94 192.168.1.95 192.168.1.96
Net 2 Net 3	Network First Last Broadcast Network First	192. 192. 192. 192. 192. 192.	168. 168. 168. 168. 168.	1. 1. 1. 1. 1. 1.	010 010 010 010 010 010	0 0000 0 0001 1 1110 1 1111 0 0000 0 0001	192.168.1.64 192.168.1.65 192.168.1.94 192.168.1.95 192.168.1.96 192.168.1.97
Net 2 Net 3	Network First Last Broadcast Network First Last	192. 192. 192. 192. 192. 192. 192.	168. 168. 168. 168. 168. 168. 168.	1. 1. 1. 1. 1. 1. 1.	010 010 010 010 010 010 010	0 0000 0 0001 1 1110 1 1111 0 0000 0 0001 1 1110	192.168.1.64 192.168.1.65 192.168.1.94 192.168.1.95 192.168.1.96 192.168.1.97 192.168.1.126

Subnetting an IPv4 Network

Creating Eight Subnets (Cont.)

	Network	192.	168.	1.	100	0 0000	192.168.1.128
Net 4	Fist	192.	168.	1.	100	0 0001	192.168.1.129
	Last	192.	168.	1.	100	1 1110	192.168.1.158
	Broadcast	192.	168.	1.	100	1 1111	192.168.1.159
	Network	192.	168.	1.	101	0 0000	192.168.1.160
Net 5	Fist	192.	168.	1.	101	0 0001	192.168.1.161
	Last	192.	168.	1.	101	1 1110	192.168.1.190
	Broadcast	192.	168.	1.	101	1 1111	192.168.1.191
	Network	192.	168.	1.	110	0 0000	192.168.1.192
Net 6	Fist	192.	168.	1.	110	0 0001	192.168.1.193
	Last	192.	168.	1.	110	1 1110	192.168.1.222
	Broadcast	192.	168.	1.	110	1 1111	192.168.1.223
	Network	192.	168.	1.	111	0 0000	192.168.1.224
Net 7	Fist	192.	168.	1.	111	0 0001	192.168.1.225
	Last	192.	168.	1.	111	1 1110	192.168.1.254
	Broadcast	192.	168.	1.	111	1 1111	192.168.1.255

<u>Subnetting an IPv4 Network</u> <u>Creating Eight Subnets (Cont.)</u>

Determining the Subnet Mask

Subnetting Based on Host Requirements

Two considerations when planning subnets:

- Number of subnets required
- Number of host addresses required

Formula to determine number of usable hosts: 2^n-2

- 2ⁿ (where n is the number of remaining host bits) is used to calculate the number of hosts.
- -2 (The subnetwork ID and broadcast address cannot be used on each subnet.)

Determining the Subnet Mask Subnetting Network-Based Requirements

Calculate the number of subnets: * 2ⁿ (where n is the number of bits borrowed) * Subnet needed for each department.

Determining the Subnet Mask

Subnetting To Meet Network Requirements

- Balance the required number of subnets and hosts for the largest subnet.
- Design the addressing scheme to accommodate the maximum number of hosts for each subnet.
- Allow for growth in each subnet.

Determining the Subnet Mask

Subnetting To Meet Network Requirements

Benefits of Variable Length Subnet Masking

Traditional Subnetting Wastes Addresses

- Traditional subnetting -Uses the same number of addresses is allocated for each subnet.
- Subnets that require fewer addresses have unused (wasted) addresses; for example, WAN links only need two addresses.

Benefits of Variable Length Subnet Masking

Variable Length Subnet Masks (VLSM)

- The variable-length subnet mask (VLSM) or subnetting a subnet provides more efficient use of addresses.
- VLSM allows a network space to be divided in unequal parts.
- Subnet mask varies, depending on how many bits have been borrowed for a particular subnet.
- Network is first subnetted, and then the subnets are resubnetted.

Benefits of Variable Length Subnet Masking Basic VLSM

Benefits of Variable Length Subnet Masking VLSM in Practice

- Using VLSM subnets, the LAN and WAN segments in example below can be addressed with minimum waste.
- Each LANs will be assigned a subnet with /27 mask.
- Each WAN link will be assigned a subnet with /30 mask.

Benefits of Variable Length Subnet Masking VLSM Chart

VLSM Subnetting of 192.168.20.0 /24

	/27 Network	Hosts
Bldg A	.0	.130
Bldg B	.32	.3362
Bldg C	.64	.6594
Bldg D	.96	.97126
Unused	.128	.129158
Unused	.160	.161190
Unused	.192	.193222
	.224	.225254

	/30 Network	Hosts
WAN R1-R2	.224	.225226
WAN R2-R3	.228	.229230
WAN R3-R4	.232	.233234
Unused	.236	.237238
Unused	.240	.241242
Unused	.244	.245246
Unused	.248	.249250
Unused	.252	.253254

Addressing Schemes

Structured Design

Planning to Address the Network

Allocation of network addresses should be planned and documented for the purposes of:

- Preventing duplication of addresses
- Providing and controlling access
- Monitoring security and performance

Client addresses - Usually dynamically assigned using the Dynamic Host Configuration Protocol (DHCP).

	Network: 192.168.1.0/24				
	Use	First	Last		
ork	Host Devices	.1	.229		
sing	Servers	.230	.239		
	Printers	.240	.249		
	Intermediary Devices	.250	.253		
	Gateway (router LAN interface)	.254			

Sample Network Addressing Plan

Design Considerations for IPv6

Subnetting an IPv6 Network Subnetting Using the Subnet ID

An IPv6 Network Space is subnetted to support hierarchical, logical design of the network

Subnetting an IPv6 Network IPV6 Subnet Allocation

Subnetting an IPv6 Network Subnetting into the Interface ID

IPv6 bits can be borrowed from the interface ID to create additional IPv6 subnets.

<u>Summary</u>

In this lecture, you learned that:

- Subnetting is the process of segmenting a network, by dividing it into multiple smaller network spaces.
- Subnetting a subnet, or using VLSM, was designed to avoid wasting addresses.
- IPv6 address space is subnetted to support the hierarchical, logical design of the network.
- Size, location, use, and access requirements are all considerations in the address planning process.
- IP networks must be tested to verify connectivity and operational performance.