Assignment (3)

Due Date: 20/6/2016

1- Given the formula: $f(x)=-1.5 x^{6}-2 x^{4}+12 x$
(a) Determine the maximum and the corresponding value of x for this function analytically (i.e., using differentiation).
(b) Use the golden sections method to determine the maximum value based on initial guesses of $x_{1}=0, x_{u}=2$.
(c) Employ Newton's method with initial guess of $\mathrm{x}_{0}=2$ and perform three iterations.

2- The normal distribution is a bell-shaped curve defined by $\mathrm{y}=\mathrm{e}^{-\mathrm{x} 2}$, Use the goldensection search to determine the location of the inflection point of this curve for positive x.

3- Find the minimum of the function:

$$
f(x)=0.65-\frac{0.75}{1+x^{2}}-\left[0.65 * x * \tan ^{-1}\left(\frac{1}{x}\right)\right]
$$

Using the Newton-Raphson method with the starting point $\mathrm{x}=0.1$. Use $\varepsilon=0.01$ for checking the convergence.

4- Minimize $f\left(x_{1}, x_{2}\right)=x_{1}-x_{2}+2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}$ starting from the point $X=\left\{\begin{array}{l}0 \\ 0\end{array}\right\}$ using the cyclic method.

5- Resolve question (4) using Hooke and Jeevs method.

6- Resolve question (4) using the Steepest Descent method.

7- Use least-squares regression to fit a straight line for

x	0	2	4	6	9	11	12	15	17	19
y	5	6	7	6	9	8	7	10	12	12

Along with the slope and intercept, compute the standard error of the estimate and the correlation coefficient. Plot the data and the regression line. Then repeat the problem, but regress x versus y — that is, switch the variables. Interpret your results.

