CUFE, M. Sc., 2015-2016

Computers \& Numerical Analysis (STR 681)

Lecture 10 OPTIMIZATION

Dr. Maha Moddather
Structural Engineering Department

Faculty of Engineering - Cairo University mahamoddather@eng.cu.edu.eg

Spring 2016

Optimization Problem

- Root location and Optimization are related in the sense that both involve guessing and searching for a point on a function.
- Root location involves searching for zeros of a function or functions. In contrast, optimization involves searching for either the minimum or the maximum.

Optimization Problem

Optimization Problem

- An optimization or mathematical programming problem generally can be stated as:

Find x, which minimizes or maximizes $f(x)$ subject to:

$$
\begin{aligned}
& d_{i}(x) \leq a_{i} i=1,2, \ldots, m \\
& e_{i}(x)=b_{i} i=1,2, \ldots, p
\end{aligned}
$$

Where x is an n -dimensional design vector, $\mathrm{f}(\mathrm{x})$ is the objective function, $\mathrm{d}_{\mathrm{i}}(\mathrm{x})$ are inequality constraints, $\mathrm{e}_{\mathrm{i}}(\mathrm{x})$ are equality constraints, and a_{i} and b_{i} are constants.

Optimization Problem

(a)

(b)

One-Dimensional Optimization

Two-Dimensional Optimization

Optimization Problem

Optimization Problem

Types of Optimization Problems:

- One-Dimensional Unconstrained Optimization.
(Golden-section search, parabolic interpolation, and Newton's method)
- Multidimensional Unconstrained Optimization.
(Conjugate gradient, Newton's method, Marquardt's method, and quasi-Newton methods)
- Constrained Optimization

Optimization Problem

The General problem definition is:
Minimize the Objective Function $G\left(x_{i}\right)$
While satisfying the Constraints $\mathrm{H}\left(\mathrm{x}_{\mathrm{i}}\right)=0.0$

In case There is no Constraints (H), or merging the constraints with the objective function, the problem is called unconstrained Optimization

Optimization Problem

$>$ In case of maximizing the Objective Function $G\left(x_{i}\right)$, it is the same problem as minimizing $-\mathrm{G}\left(\mathrm{x}_{\mathrm{i}}\right)$.
$>$ To merge the constraints with the objective function to switch from constrained to unconstrained optimization, there are several methods such as penalty or Lagrange methods

$$
\mathrm{G}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{G}\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{I}\left[\mathrm{H}\left(\mathrm{x}_{\mathrm{i}}\right)\right]^{2}
$$

Where I is a large number

ONE-DIMENSIONAL

OPTIMIZATION

Line Search

To minimize an objective function with one variable, line search can be categorized as:
> Line Search Without Using Derivatives:
\star Golden Section Method.

* Fibonacci Search Method.
> Line Search Using Derivatives:
* Bisection Method.
* Newton's Method.

Line Search : Golden Sections

If there is possible interval of uncertainty between a_{k} and b_{k}, we can try two inner values λ_{k} and μ_{k} then:

1- If $G\left(\lambda_{k}\right)$ is the smallest, then Minimum lies between a_{k} and μ_{k}.

2- $\operatorname{If}\left(\mu_{k}\right)$ is the smallest, then Minimum lies between λ_{k} and b_{k}.

Line Search : Golden Sections

> The Golden Ratio:

$$
\frac{\sqrt{5}-1}{2}=0.61803 \ldots
$$

This ratio was employed for a number of purposes, including the development of the rectangle. These proportions were considered aesthetically pleasing by the Greeks. Among other things, many of their temples followed this shape.

Line Search : Golden Sections

> The Golden Ratio:

$$
\frac{\sqrt{5}-1}{2}=0.61803 \ldots
$$

Line Search : Golden Sections

$>$ To make use of the three values in the next iteration, we need to divide the interval between a_{k} and b_{k} using a certain ration (a) so that in the next iteration one of λ_{k} or μ_{k} will be reused.
$>$ To Achieve this criteria, the following equations should be satisfied :

$$
\begin{gathered}
\lambda_{k}=a_{k}+(1-\alpha)\left(b_{k}-a_{k}\right) \\
\mu_{k}=a_{k}+\alpha\left(b_{k}-a_{k}\right) \\
\alpha^{2}+\alpha-1=0 \text { then } \alpha=\sqrt{1.25}-0.5=0.618034
\end{gathered}
$$

Line Search : Golden Sections

EXAMPLE (1):

Find the minimum of:

$$
G(x)=x^{2}+2 x
$$

Subject to

$$
-3 \leq x \leq 5 \text { (Possible uncertainty interval) }
$$

Solution

By analytical means, the minimum of G is at $x=-1$. In order to obtain it with Golden sections see the following table:

Line Search : Golden Sections

K	a_{k}	b_{k}	$\lambda_{k=} a_{k}+(0.382)\left(b_{k}-a_{k}\right)$	$\begin{gathered} \mu_{k}=a_{k}+(0.618)\left(b_{k}-\right. \\ \left.a_{k}\right) \end{gathered}$	$G\left(\lambda_{k}\right)$	$\mathrm{G}\left(\mu_{\mathrm{k}}\right)$
1	-3.000	5.000	0.056	-1.944	0.115	7.669
2	$\stackrel{\downarrow}{-3.000}$	1.944	-1.111	0.056	-0.988	0.115
3	-3.000	0.056	-1.833	-1.111	-0.306	-0.988
4	-1.833	0.056	-1.111	-0.666	-0.988	-0.888
5	-1.833	-0.666	-1.387	-1.111	-0.850	-0.988
6	-1.387	-0.666	-1.111	-0.941	-0.988	-0.997
7	-1.111	-0.666	-0.941	-0.836	-0.997	-0.973
8	-1.111	-0.836	-1.006	-0.941	-1.000	-0.997
9	-1.111	-0.941	-1.046	-1.006	-0.998	-1.000

Line Search (Fibonacci Search Method)

Fibonacci Mathematical Series:
, 233 , .. F_{i}, $\ldots \ldots . . \mathrm{F}_{\mathrm{N}}$

- Each number after the first two represents the sum of the preceding two.
- An interesting property of the Fibonacci sequence relates to the ratio of consecutive numbers in the sequence; that is, $0 / 1=0,1 / 1=1,1 / 2=0.5,2 / 3=0.667,3 / 5=0.6,5 / 8=$ $0.625,8 / 13=0.615$
- As one proceeds, the ratio of consecutive numbers approaches the golden ratio!

Line Search (Fibonacci Search Method)

Figure: Columbine (left, 5 petals); Black-eyed Susan (right, 13 petals)

Figure: Shasta Daisy (left, 21 petals); Field Daisies (right, 34 petals) Fibonacci Mathematical Series:
, 233 , ... $\mathrm{F}_{\mathrm{i},} \ldots \ldots . . . \mathrm{F}_{\mathrm{N}}$

Line Search (Fibonacci Search Method)

Bracts arranged in
Fibonacci numbers of spirals

Fibonacci Mathematical Series:

	233, 144, 89, 55, 34, 21, 13, 5, 3, 2

Line Search (Fibonacci Search Method)

Fibonacci used the following series of numbers to split the possible uncertainty interval (L):

$\ldots \ldots . . \mathrm{F}_{\mathrm{N}}$

1- Define the allowable final uncertainty length D.

2- Number of Fibonacci series (N) could be defined from

$$
\mathrm{F}_{\mathrm{N}}=\mathrm{L} / \mathrm{D}
$$

Line Search (Fibonacci Search Method)

$$
\text { 3- } \begin{aligned}
& \lambda_{k}= a_{k}+\left(F_{N-k-1} / F_{N-k+1}\right)\left(b_{k}-a_{k}\right) \\
& \mu_{k}=a_{k}+\left(F_{N-k} / F_{N-k+1}\right)\left(b_{k}-a_{k}\right)
\end{aligned}
$$

4- Same organization shall be used as Golden Section Method

Line Search (Fibonacci Search Method)

EXAMPLE

Find the minimum of
$G(x)=x^{2}+2 x$
Subject to
$-3 \leq x \leq 5$ (Possible uncertainty interval)
The acceptable final uncertainty interval length is 0.2
Solution
$\mathrm{F}_{\mathrm{N}}=(5-(-3)) / .2=40$ then $\mathrm{N}=9$

Line Search (Fibonacci Search Method)

Line Search (Bisection Method)

$>$ In this method, the search is made for the zero value for the first derivative of the objective function.
$>$ Bisection method could be used to find this zero value.

Line Search (Newoton's Method)

In this method, a quadratic approximation to the function " G " in the neighborhood of λ_{k} is described as Q as follows:

$$
Q(\lambda)=G\left(\lambda_{k}\right)+G^{\prime}\left(\lambda_{k}\right)\left(\lambda-\lambda_{k}\right)+\frac{1}{2} G^{\prime \prime}\left(\lambda_{k}\right)\left(\lambda-\lambda_{k}\right)^{2}
$$

For minimum Q, the derivative of Q is equal zero. This yield to:

$$
Q^{\prime}(\lambda)=G^{\prime}\left(\lambda_{k}\right)+\lambda G^{\prime \prime}\left(\lambda_{k}\right)\left(\lambda-\lambda_{k}\right)=0
$$

Then $Q=0.0$ at $\lambda=\lambda_{k}$

$$
\lambda_{k+1}=\lambda_{k}-\frac{G^{\prime}\left(\lambda_{k}\right)}{G^{\prime \prime}\left(\lambda_{k}\right)}
$$

Line Search (Newoton's Method)

EXAMPLE

Find the minimum of $G(x)=\left\{\begin{array}{lll}4 x^{3}-3 x^{4} & \text { if } & x \geq 0 \\ 4 x^{3}+3 x^{4} & \text { if } & x<0\end{array}\right\}$

Line Search (Newoton's Method)

EXAMPLE

The convergence depends on the initial value and how it is close to the actual minimum. If initial value of -0.7 is used, the convergence is achieved.

\mathbf{k}	$\boldsymbol{\lambda}_{\mathbf{k}}$	\mathbf{G}^{\prime}	$\mathbf{G}^{/ /}$	$\boldsymbol{\lambda}_{\mathbf{k + 1}}$
$\mathbf{1}$	-0.7	1.764	0.84	-2.8
$\mathbf{2}$	-2.8	-169	215	-2.01
$\mathbf{3}$	-2.01	-49.2	97.51	-1.51
$\mathbf{4}$	-1.51	-13.9	45.66	-1.2
$\mathbf{5}$	-1.2	-3.56	23.31	-1.05
$\mathbf{6}$	-1.05	-0.69	14.58	-1
$\mathbf{7}$	-1	-0.06	12.22	-1
$\mathbf{8}$	-1	-0	12	-1
$\mathbf{9}$	-1	-0	12	-1
$\mathbf{1 0}$	-1	0	12	-1

Line Search (Newoton's Method)

EXAMPLE

If initial value of -0.6 is used, the convergence is not achieved.

\mathbf{k}	$\mathbf{I}_{\mathbf{k}}$	\mathbf{G}^{\prime}	$\mathbf{G}^{/ /}$	$\mathbf{I}_{\mathbf{k}+\mathbf{1}}$
$\mathbf{1}$	-0.6	1.728	-1.44	0.6
$\mathbf{2}$	0.6	1.728	1.44	-0.6
$\mathbf{3}$	-0.6	1.728	-1.44	0.6
$\mathbf{4}$	0.6	1.728	1.44	-0.6
$\mathbf{5}$	-0.6	1.728	-1.44	0.6
$\mathbf{6}$	0.6	1.728	1.44	-0.6
$\mathbf{7}$	-0.6	1.728	-1.44	0.6
$\mathbf{8}$	0.6	1.728	1.44	-0.6
$\mathbf{9}$	-0.6	1.728	-1.44	0.6
$\mathbf{1 0}$	0.6	1.728	1.44	-0.6

TWO-DIMENSIONAL

OPTIMIZATION

Optimization Problem

> The General problem definition is:

Minimize the Objective Function $\mathrm{G}\left(\mathrm{x}_{\mathrm{i}}\right)$
Where $\mathrm{i}=1, \mathrm{n}$

$>$ To minimize the objective function there are two approaches:
\checkmark Multidimensional Search without using Derivatives.
\checkmark Multidimensional Search using Derivatives.

Optimization Problem

Optimization Problem

To optimize a multi-dimensional Objective function, we need:
$>$ A direction that we search for the minimum on it.
$>$ Line Search to find the minimum value on this direction.

Multidimensional Search Without Using Derivatives

$>$ Cyclic Method.
$>$ Hooke and Jeeves.
$>$ Rosenbrock

Cyclic Method

1- Chose a scalar value $\varepsilon>0$ to be used to terminate the algorithm (i.e. $\left\|X_{k+1}-X_{k}\right\|<\varepsilon$).

2- Choose an initial point X_{1}.
3- set $y_{1}=X_{1}$ and $K=1$ (cycles Counter) and $J=1$ (Line search Counter)

4- Let λ be an optimal solution to minimize $G\left(y_{j}+\lambda d_{j}\right)$ where d_{j} is the coordinate directions (i.e. $\mathrm{d}_{2}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right.$ $\ldots), d_{2}=\left(\begin{array}{llll}0 & 1 & 0 & 0\end{array} ..\right), d_{n}=\left(\begin{array}{lll}0 & 0 & \ldots .1\end{array}\right)$

5- Let $y_{j+1}=y_{j}+\lambda d_{j}$
6- Repeat Step 4 using $\mathrm{j}+1$, if $\mathrm{j} \leq \mathrm{n}$ otherwise goto step 7

7- Let $\mathrm{X}_{\mathrm{k}+1}=\mathrm{y}_{\mathrm{n}+1}$ and replace k by $\mathrm{k}+1$ and repeat step 3 till $\left\|X_{k+1}-X_{k}\right\|<\varepsilon$

EXAMPLE

Minimize

$$
\mathrm{G}\left(\mathrm{X}_{\mathrm{i}}\right)=\left(\mathrm{x}_{1}-2\right)^{4}+\left(\mathrm{x}_{1}-2 \mathrm{x}_{2}\right)^{2} \quad \text { Where } \mathrm{i}=1,2
$$

Table 8.6 Summary of Computations for the Cyclic Coordinate Method

Iteration k	\mathbf{x}_{k} $f\left(\mathbf{x}_{k}\right)$	j	\mathbf{d}_{j}	\mathbf{y}_{j}	λ_{J}	\mathbf{y}_{j+1}
1	$(0.00,3.00)$	1	$(1.0,0.0)$	$(0.00,3.00)$	3.13	$(3.13,3.00)$
	52.00	2	$(0.0,1.0)$	$(3.13,3.00)$	-1.44	$(3.13,1.56)$
2	$(3.13,1.56)$	1	$(1.0,0.0)$	$(3.13,1.56)$	-0.50	$(2.63,1.56)$
	1.63	2	$(0.0,1.0)$	$(2.63,1.56)$	-0.25	$(2.63,1.31)$
3	$(2.63,1.31)$	1	$(1.0,0.0)$	$(2.63,1.31)$	-0.19	$(2.44,1.31)$
	0.16	2	$(0.0,1.0)$	$(2.44,1.31)$	-0.09	$(2.44,1.22)$
4	$(2.44,1.22)$	1	$(1.0,0.0)$	$(2.44,1.22)$	-0.09	$(2.35,1.22)$
	0.04	2	$(0.0,1.0)$	$(2.35,1.22)$	-0.05	$(2.35,1.17)$
5	$(2.35,1.17)$	1	$(1.0,0.0)$	$(2.35,1.17)$	-0.06	$(2.29,1.17)$
	0.015	2	$(0.0,1.0)$	$(2.29,1.17)$	-0.03	$(2.29,1.14)$
6	$(2.29,1.14)$	1	$(1.0,0.0)$	$(2.29,1.14)$	-0.04	$(2.25,1.14)$
	0.007	2	$(0.0,1.0)$	$(2.25,1.14)$	-0.02	$(2.25,1.12)$
7	$(2.25,1.12)$	1	$(1.0,0.0)$	$(2.25,1.12)$	-0.03	$(2.22,1.12)$
	0.004	2	$(0.0,1.0)$	$(2.22,1.12)$	-0.01	$(2.22,1.11)$

Cyclic Method Convergence problems

1- If G is differentiable then the method converges to a stationary point

inflection point

minimum

maximum

Cyclic Method Convergence problems

2- If G has ridges, then Cyclic method may not converge to the absolute minimum

Figure 8.8 Illustration of the effect of a ridge.

Hooke and Jeevs

Figure 8.9 Illustration of the method of Hooke and Jeeves.

Hooke and Jeevs

Hooke and Jeevs

1- Choose a scalar value $\varepsilon>0$ to be used to terminate the algorithm (i.e. $\quad\left\|X_{k+1}-X_{k}\right\|<\varepsilon$)

2- Choose an initial point X_{1} and set $k=1$

3- Make one Cycle from the Cyclic Method to obtain X_{k+1}
4- Define the new search direction as $d=X_{k+1}-X_{k}$ and make a line search to get the minimum at y '

5- Set $\mathrm{k}=\mathrm{k}+1$ and repeat Step 3 using y ' as an initial value
6- Keep repeating till $\left\|X_{k+1}-X_{k}\right\|<\varepsilon$

EXAMPLE

$$
G\left(X_{i}\right)=\left(x_{1}-2\right)^{4}+\left(x_{1}-2 x_{2}\right)^{2} \quad \text { Where } \mathrm{i}=1,2
$$

Table 8.7 Summary of Computations for the Method of Hooke and Jeeves Using Line Searches

Iteration k	x_{k}								
$\left.\mathrm{~m}_{k}\right)$	j	y_{j}	$\mathrm{~d}_{j}$	λ_{j}	y_{j+1}	d	$\hat{\lambda}$	$\mathrm{y}_{3}+\hat{\lambda} \mathrm{d}$	
1	$(0.00,3.00)$	1	$(0.00,3.00)$	$(1.0,0.0)$	3.13	$(3.13,3.00)$	-	-	-
	52.00	2	$(3.13,3.00)$	$(0.0,1.0)$	-1.44	$(3.13,1.56)$	$(3.13,1.44)$	-0.10	$(2.82,1.70)$
2	$(3.13,1.56)$	1	$(2.82,1.70)$	$(1.0,0.0)$	-0.12	$(2.70,1.70)$	-	-	-
	1.63	2	$(2.70,1.70)$	$(0.0,1.0)$	-0.35	$(2.70,1.35)$	$(-0.43,-0.21)$	1.50	$(2.06,1.04)$
3	$(2.70,1.35)$	1	$(2.06,1.04)$	$(1.0,0.0)$	-0.02	$(2.04,1.04)$	-	-	-
	0.24	2	$(2.04,1.04)$	$(0.0,1.0)$	-0.02	$(2.04,1.02)$	$(-0.66,-0.33)$	0.06	$(2.00,1.00)$
4	$(2.04,1.02)$	1	$(2.00,1.00)$	$(1.0,0.0)$	0.00	$(2.00,1.00)$	-	-	-
	0.000003	2	$(2.00,1.00)$	$(0.0,1.0)$	0.00	$(2.00,1.00)$			
5	$(2.00,1.00)$								
	0.00								

Multidimensional Search Using Derivatives

1- Steepest Descent Method

2- Newton Method

3- Conjugate Direction Method

Steepest Descent Method

1- Line search will take the following direction each global iteration

$$
d=-\frac{\nabla G\left(x_{k}\right)}{\left\|\nabla G\left(x_{k}\right)\right\|}
$$

Note:

$$
\nabla G\left(x_{k}\right)=\left(\begin{array}{c}
\frac{\partial G}{\partial x_{1}} \\
\frac{\partial G}{\partial x_{2}} \\
\cdot \\
\cdot \\
\frac{\partial G}{\partial x_{n}}
\end{array}\right)
$$

EXAMPLE

$$
G\left(X_{i}\right)=\left(x_{1}-2\right)^{4}+\left(x_{1}-2 x_{2}\right)^{2} \quad \text { Where } \mathrm{i}=1,2
$$

Table 8.11 Summary of Computations for the Method of Steepest Descent

$\begin{gathered} \text { Iteration } \\ k \end{gathered}$	$\begin{gathered} \mathbf{x}_{k} \\ f\left(\mathbf{x}_{k}\right) \\ \hline \end{gathered}$	$\nabla f\left(\mathbf{x}_{k}\right)$	$\left\\|\nabla f\left(\mathbf{x}_{k}\right)\right\\|$	$\mathrm{d}_{k}=-\nabla f\left(\mathbf{x}_{k}\right)$	λ_{k}	\mathbf{x}_{k+1}
1	$\begin{gathered} (0.00,3.00) \\ 52.00 \end{gathered}$	(-44.00, 24.00)	50.12	(44.00, -24.00)	0.062	(2.70, 1.51
2	$\begin{gathered} (2.70,1.51) \\ 0.34 \end{gathered}$	(0.73, 1.28)	1.47	$(-0.73,-1.28)$	0.24	(2.52, 1.20)
3	$\begin{gathered} (2.52,1.20) \\ 0.09 \end{gathered}$	(0.80, -0.48)	0.93	($-0.80,0.48$)	0.11	(2.43, 1.25)
4	$\begin{gathered} (2.43,1.25) \\ 0.04 \end{gathered}$	(0.18, 0.28)	0.33	$(-0.18,-0.28)$	0.31	(2.37, 1.16)
5	$\begin{gathered} (2.37,1.16) \\ 0.02 \end{gathered}$	(0.30, -0.20)	0.36	($-0.30,0.20$)	0.12	(2.33, 1.18)
6	$\begin{gathered} (2.33,1.18) \\ 0.01 \end{gathered}$	(0.08, 0.12)	0.14	$(-0.08,-0.12)$	0.36	$(2.30,1.14)$
7	$\begin{gathered} (2.30,1.14) \\ 0.009 \end{gathered}$	(0.15, -0.08)	0.17	$(-0.15,0.08)$	0.13	(2.28, 1.15$)$
8	$\begin{gathered} (2.28,1.15) \\ 0.007 \end{gathered}$	(0.05, 0.08)	0.09			

NEWTON Method

1- Line search will take the following direction each global iteration

$$
x_{k+1}=x_{k}-H\left(x_{k}\right)^{-1} \nabla G\left(x_{k}\right)
$$

Note: $\left\{\begin{array}{ll}\frac{\partial^{2} G}{\partial x_{1}^{2}} & \frac{\partial^{2} G}{\partial x_{1} \partial x_{2}} \\ \frac{\partial^{2} G}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} G}{\partial x_{2}^{2}} \\ \frac{\partial^{2} G}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} G}{\partial x_{n} \partial x_{2}} \\ \nabla G\left(x_{k}\right)=\left(\begin{array}{c}\frac{\partial G}{\partial x_{1}} \\ \frac{\partial G}{\partial x_{2}} \\ \cdot \\ \dot{\partial G} \\ \frac{\partial x_{n}}{}\end{array}\right)\end{array}\right.$,

Figure 8.18 Illustration of the method of Newton.

EXAMPLE

$G\left(X_{i}\right)=\left(x_{1}-2\right)^{4}+\left(x_{1}-2 x_{2}\right)^{2} \quad$ Where $\mathrm{i}=1,2$

Table 8.12 Summary of Computations for the Method of Newton

Iteration k	$\begin{array}{r} \mathbf{x}_{k} \\ f\left(\mathbf{x}_{k}\right) \\ \hline \end{array}$	$\nabla f\left(\mathbf{x}_{k}\right)$	$\mathbf{H}\left(\mathrm{x}_{k}\right)$	$\mathbf{H}\left(\mathbf{x}_{k}\right)^{-1}$	$-\mathbf{H}\left(\mathbf{x}_{k}\right)^{-1} \nabla f\left(\mathbf{x}_{k}\right)$	\mathbf{x}_{k+1}
1	$\begin{gathered} (0.00,3.00) \\ 52.00 \end{gathered}$	(-44.0, 24.0)	$\left[\begin{array}{rr}50.0 & -4.0 \\ -4.0 & 8.0\end{array}\right]$	$\frac{1}{384}\left[\begin{array}{rr}8.0 & 4.0 \\ 4.0 & 50.0\end{array}\right]$	(0.67, -2.67)	(0.67, 0.33)
2	$\begin{gathered} (0.67,0.33) \\ 3.13 \end{gathered}$	$(-9.39,-0.04)$	$\left[\begin{array}{cr}23.23 & -4.0 \\ -4.0 & 8.0\end{array}\right]$	$\frac{1}{169.84}\left[\begin{array}{cc}8.0 & 4.0 \\ 4.0 & 23.23\end{array}\right]$	$(0.44,0.23)$	(1.11, 0.56)
3	$\begin{gathered} (1.11,0.56) \\ 0.63 \end{gathered}$	$(-2.84,-0.04)$	$\left[\begin{array}{cr}11.50 & -4.0 \\ -4.0 & 8.0\end{array}\right]$	$\frac{1}{76}\left[\begin{array}{cc}8.0 & 4.0 \\ 4.0 & 11.50\end{array}\right]$.	(0.30, 0.14)	(1.41, 0.70)
4	$\begin{gathered} (1.41,0.70) \\ 0.12 \end{gathered}$	$(-0.80,-0.04)$	$\left[\begin{array}{cc}6.18 & 4.0 \\ -4.0 & 8.0\end{array}\right]$	$\frac{1}{33.44}\left[\begin{array}{ll}8.0 & 4.0 \\ 4.0 & 6.18\end{array}\right]$	(0.20, 0.10)	(1.61, 0.80)
5	$\begin{gathered} (1.61,0.80) \\ 0.02 \end{gathered}$	$(-0.22,-0.04)$	$\left[\begin{array}{cr}3.83 & -4.0 \\ -4.0 & 8.0\end{array}\right]$	$\frac{1}{14.64}\left[\begin{array}{ll}8.0 & 4.0 \\ 4.0 & 3.83\end{array}\right]$	(0.13, 0.07)	$(1.74,0.87)$
6	$\begin{gathered} (1.74,0.87) \\ 0.005 \end{gathered}$	(-0.07, 0.00)	$\left[\begin{array}{rr}2.81 & -4.0 \\ -4.0 & 8.0\end{array}\right]$	$\frac{1}{6.48}\left[\begin{array}{ll}8.0 & 4.0 \\ 4.0 & 2.81\end{array}\right]$	$(0.09,0.04)$	$(1.83,0.91)$
7	$\begin{gathered} (1.83,0.91) \\ 0.0009 \end{gathered}$	(0.0003, -0.04)				

MatLAB Program OPTIMIZATION TOOL

OPTIMIZATION TOOLBOX

- Useful for larger, more structured optimization problems.
-Sample functions include:
Linprog, quadprog, fmincon, fminbnd
Use MATLab Help to know
the use of each function

Line Search (Fibonacci Search Method)

EXAMPLE

Find the minimum of
$G(x)=x^{2}+2 x$
Subject to
$-3 \leq x \leq 5$ (Possible uncertainty interval)
The acceptable final uncertainty interval length is 0.2

OPTIMIZATION TOOLBOX

Unconstrained Optimization Example:

$\gg x=$ fminbnd $\left(@(x)\left(x .{ }^{\wedge} 2+2^{*} x\right),-3,5\right)$
Find minimum
of single-

$$
X=\begin{gathered}
\text { variable } \\
\text { function on } \\
\text { fixed interval }
\end{gathered}
$$ Function

-1

OPTIMIZATION TOOLBOX

Unconstrained Optimization Example:

>> x = -1:.01:2;
$\mathrm{y}=\operatorname{humps}(\mathrm{x})$;
plot(x,y)
xlabel('x')
ylabel('humps(x)') grid on

OPTIMIZATION TOOLBOX

Unconstrained Optimization Example:

>> x = fminbnd(@humps,0.3,1)
$x=$
0.6370

OPTIMIZATION TOOLBOX

Unconstrained Optimization Example:

Consider the problem of finding a minimum of the function:

OPTIMIZATION TOOLBOX

Unconstrained Optimization Example:

Plot the function to get an idea of where it is minimized.
$f=@(x, y) x . .^{*} \exp \left(-x . .^{\wedge} 2-y .{ }^{\wedge} 2\right)+\left(x .{ }^{\wedge} 2+y .{ }^{\wedge} 2\right) / 20 ;$
ezsurfc(f,[-2,2])

OPTIMIZATION TOOLBOX

Unconstrained Optimization Example:

Plot the function to get an idea of where it is minimized.

Minimum is at

$$
(-0.5,0)
$$

OPTIMIZATION TOOLBOX

Date	Topic
Tuesday 10-5	Optimization
Tuesday 17-5	Curve Fitting
Tuesday 24-5	Numerical Integration
Tuesday 31-5	Fourier Analysis

