CUFE, M. Sc., 2015-2016

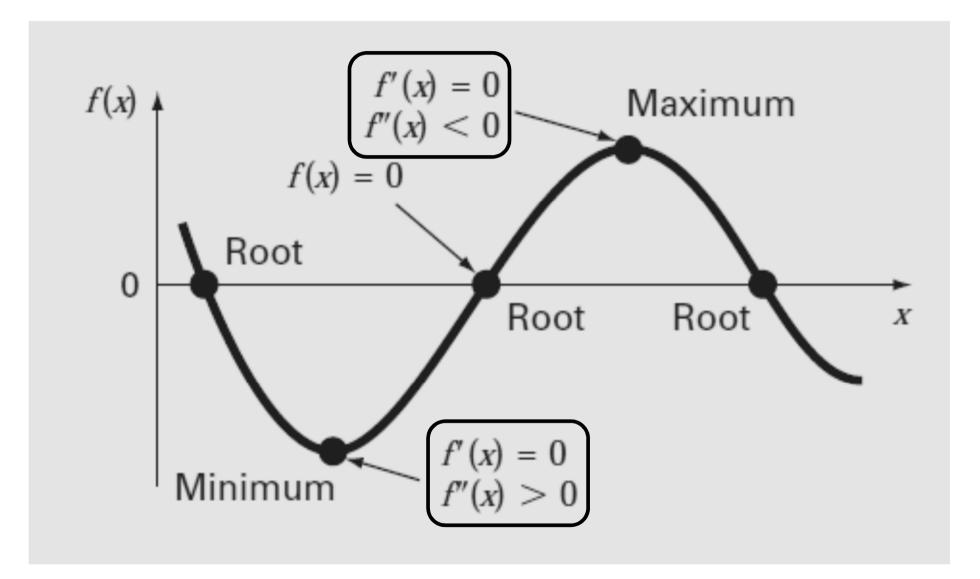
Computers & Numerical Analysis (STR 681)

Lecture 10 OPTIMIZATION

Dr. Maha Moddather Structural Engineering Department Faculty of Engineering – Cairo University <u>mahamoddather@eng.cu.edu.eg</u> Spring 2016

Root location and Optimization are related in the sense that both involve guessing and searching for a point on a function.

Root location involves searching for zeros of a function or functions. In contrast, optimization involves searching for either the minimum or the maximum.



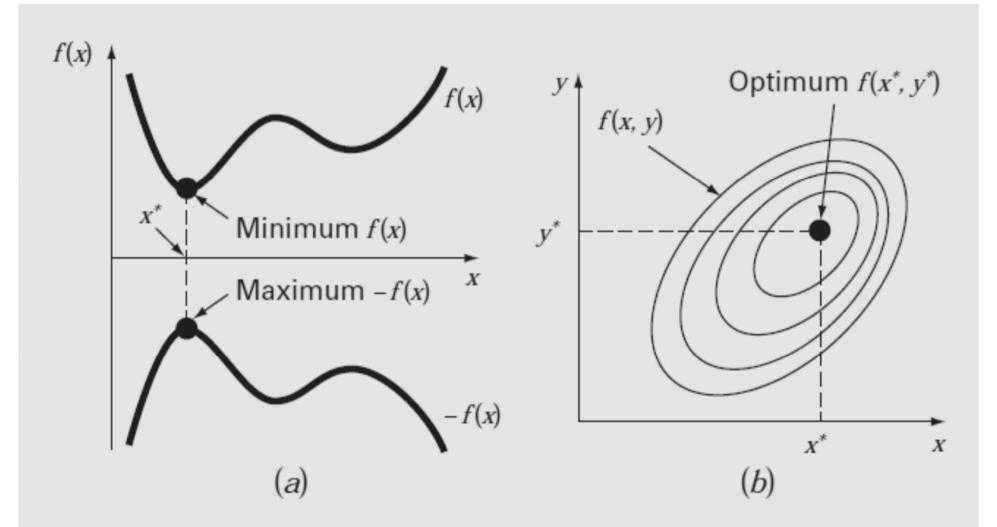
An optimization or mathematical programming problem generally can be stated as:

Find x, which minimizes or maximizes f (x) subject to:

$$d_i(x) \le a_i i = 1, 2, ..., m$$

 $e_i(x) = b_i i = 1, 2, ..., p$

Where x is an n-dimensional design vector, f (x) is the objective function, $d_i(x)$ are inequality constraints, $e_i(x)$ are equality constraints, and a_i and b_i are constants.



One-Dimensional Optimization Two-Dimensional Optimization

Optimization Problem $x \exp(-x^2-y^2)+(x^2+y^2)/20$ 0.4 0.2 0 -0.2 -0.4 2 0 2 0 0 **Two-Dimensional** -1 -2 -2 y х Optimization

Types of Optimization Problems:

One-Dimensional Unconstrained Optimization.
 (Golden-section search, parabolic interpolation, and Newton's method)

Multidimensional Unconstrained Optimization.

(Conjugate gradient, Newton's method, Marquardt's method, and quasi-Newton methods)

Constrained Optimization

The General problem definition is:

Minimize the Objective Function $G(x_i)$

While satisfying the Constraints $H(x_i)=0.0$

In case There is no Constraints (H), or merging the constraints with the objective function, the problem is called unconstrained Optimization

In case of maximizing the Objective Function G(x_i), it is the same problem as minimizing - G(x_i).

To merge the constraints with the objective function to switch from constrained to unconstrained optimization, there are several methods such as penalty or Lagrange methods

 $G'(x_i) = G(x_i) + I [H(x_i)]^2$

Where I is a large number

ONE-DIMENSIONAL OPTIMIZATION

Line Search

To minimize an objective function with one variable, line search can be categorized as:

Line Search Without Using Derivatives:

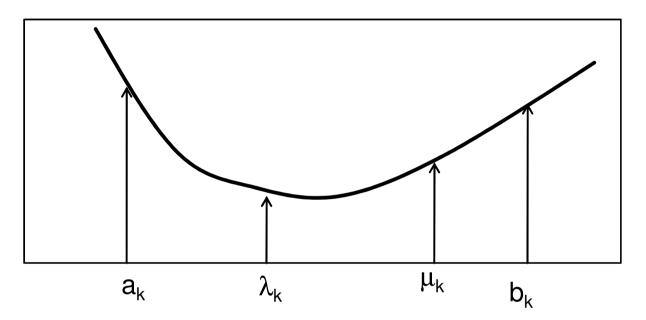
Golden Section Method.

Fibonacci Search Method.

Line Search Using Derivatives:

Bisection Method.

Newton's Method.



If there is possible interval of uncertainty between a_k and b_k , we can try two inner values λ_k and μ_k then:

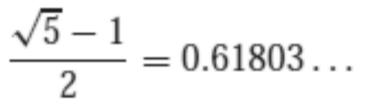
- 1- If $G(\lambda_k)$ is the smallest, then Minimum lies between a_k and $\mu_k.$
- 2- If(μ_k) is the smallest, then Minimum lies between λ_k and b_k .

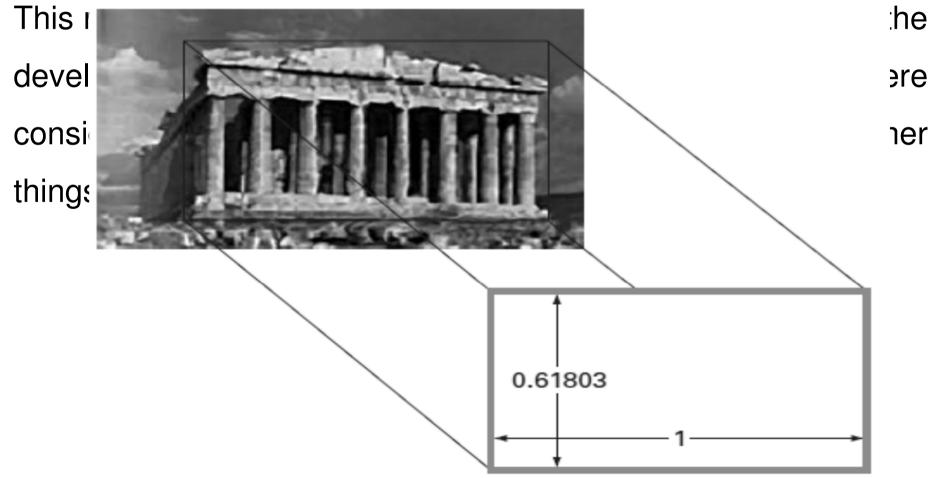
The Golden Ratio:

$$\frac{\sqrt{5}-1}{2} = 0.61803\dots$$

This ratio was employed for a number of purposes, including the development of the rectangle. These proportions were considered aesthetically pleasing by the Greeks. Among other things, many of their temples followed this shape.

> The Golden Ratio:





To make use of the three values in the next iteration, we need to divide the interval between a_k and b_k using a certain ration
 (a) so that in the next iteration one of λ_k or μ_k will be reused.

To Achieve this criteria, the following equations should be satisfied :

$$\lambda_k = a_k + (1 - \alpha)(b_k - a_k)$$

$$\mu_k = a_k + \alpha(b_k - a_k)$$

$$\alpha^2 + \alpha - 1 = 0 \text{ then } \alpha = \sqrt{1.25} - 0.5 = 0.618034$$

EXAMPLE (1):

Find the minimum of:

 $G(x)=x^2+2x$

Subject to

 $-3 \le x \le 5$ (Possible uncertainty interval)

Solution

By analytical means, the minimum of G is at x = -1. In order to obtain it with Golden sections see the following table:

К	a _k	b _k	λ _{k=} a _k +(0.382)(b _k -a _k)	μ _{k=} a _k +(0.618)(b _k - a _k)	G(λ _k)	G(μ _k)
1	-3.000	5.000	0.056	1.944	0.115	7.669
2	-3.000	1.944 '	-1.111	0.056	-0.988	0.115
3	-3.000	0.056	-1.833	-1.111	-0.306	-0.988
4	-1.833	0.056	-1.111	-0.666	-0.988	-0.888
5	-1.833	-0.666	-1.387	-1.111	-0.850	-0.988
6	-1.387	-0.666	-1.111	-0.941	-0.988	-0.997
7	-1.111	-0.666	-0.941	-0.836	-0.997	-0.973
8	-1.111	-0.836	-1.006	-0.941	-1.000	-0.997
9	-1.111	-0.941	-1.046	-1.006	-0.998	-1.000

Fibonacci Mathematical Series:

- 1 ,1 ,2 ,3 ,5 ,8 ,13 ,21 ,34 ,55 ,89 ,144 ,233 , $\ldots F_{i_{\rm i}}$ $\ldots F_{\rm N}$
- Each number after the first two represents the sum of the preceding two.
- An interesting property of the Fibonacci sequence relates to the ratio of consecutive numbers in the sequence; that is, 0/1 = 0, 1/1 = 1, 1/2 = 0.5, 2/3 = 0.667, 3/5 = 0.6, 5/8 = 0.625, 8/13 = 0.615
- As one proceeds, the ratio of consecutive numbers approaches the golden ratio!

Figure: Columbine (left, 5 petals); Black-eyed Susan (right, 13 petals)

Figure: Shasta Daisy (left, 21 petals); Field Daisies (right, 34 petals) Fibonacci Mathematical Series:

1 ,1 ,2 ,3 ,5 ,8 ,13 ,21 ,34 ,55 ,89 ,144 ,233 , $\dots F_{i_{,}}$ F_{N}

Bracts arranged in Fibonacci numbers of spirals

Fibonacci Mathematical Series:

1 ,1 ,2 ,3 ,5 ,8 ,13 ,21 ,34 ,55 ,89 ,144 ,233 , $\dots F_{i_{i_{1}}}$ F_{N}

Fibonacci used the following series of numbers to split the possible uncertainty interval (L):

1 ,1 ,2 ,3 ,5 ,8 ,13 ,21 ,34 ,55 ,89 ,144 ,233 , $\ldots F_{i_{,}}$ $\ldots F_{N}$

1- Define the allowable final uncertainty length D.

2- Number of Fibonacci series (N) could be defined from

 $F_N = L/D$

3-
$$\lambda_{k=} a_k + (F_{N-k-1}/F_{N-k+1})(b_k - a_k)$$

$$\mu_{k=} a_k + (F_{N-k}/F_{N-k+1})(b_k - a_k)$$

4- Same organization shall be used as Golden Section Method

EXAMPLE

Find the minimum of

 $G(x)=x^2+2x$

Subject to

 $-3 \le x \le 5$ (Possible uncertainty interval)

The acceptable final uncertainty interval length is 0.2

Solution

 $F_N = (5-(-3))/.2 = 40$ then N=9

F0	F1	F2	F3	F4	F5	F6	F7	F8	F9
1	1	2	3	5	8	13	21	34	55
К	a _k	b _k	λ _k =a _k +(F _{8-k} /F ₁₀₋ _k)(b _k -a _k)	μ _k =a _k +(F _{9-k} /F ₁₀₋ ,(b _k -a _k)	G(λ _{k)}	G(μ_{k)}			
1	-3.000	5.000	0.055	1.945	0.112	7.676			
2	-3.000	1.945	-1.112	0.057	-0.988	0.118			
3	-3.000	0.057	-1.833	-1.110	-0.307	-0.988			
4	-1.833	0.057	-1.111	-0.664	-0.988	-0.887			
5	-1.833	-0.664	-1.387	-1.110	-0.851	-0.988			
6	-1.387	-0.664	-1.111	-0.940	-0.988	-0.996			
7	-1.111	-0.664	-0.940	-0.835	-0.996	-0.973			
8	-1.111	-0.835	-1.005	-0.940	-1.000	-0.996			
9	-1.111	-0.940	-1.046	-1.005	-0.998	-1.000			

Line Search (Bisection Method)

In this method, the search is made for the zero value for the first derivative of the objective function.

Bisection method could be used to find this zero value.

Line Search (Newoton's Method)

In this method, a quadratic approximation to the function "G" in the neighborhood of λ_k is described as Q as follows:

$$Q(\lambda) = G(\lambda_k) + G'(\lambda_k)(\lambda - \lambda_k) + \frac{1}{2}G''(\lambda_k)(\lambda - \lambda_k)^2$$

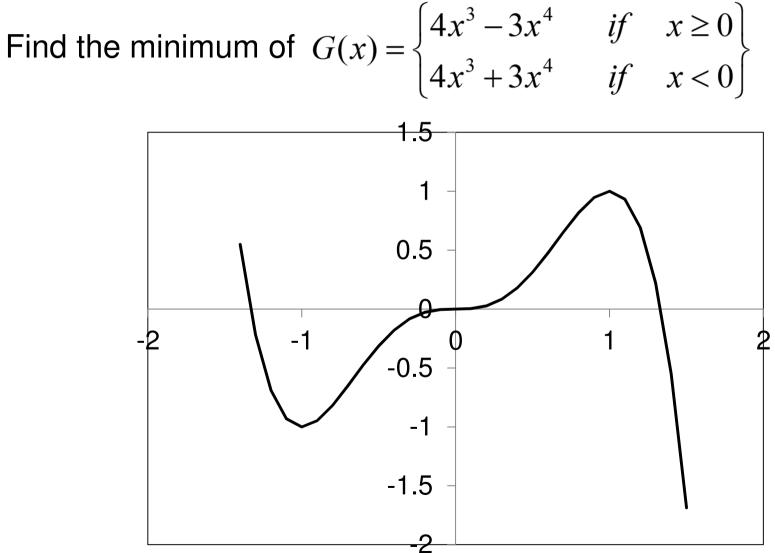
For minimum Q, the derivative of Q is equal zero. This yield to:

$$Q'(\lambda) = G'(\lambda_k) + \lambda G''(\lambda_k)(\lambda - \lambda_k) = 0$$

Then Q[/]=0.0 at $\lambda = \lambda_k$

$$\lambda_{k+1} = \lambda_k - \frac{G'(\lambda_k)}{G''(\lambda_k)}$$

Line Search (Newoton's Method) EXAMPLE



Line Search (Newoton's Method) EXAMPLE

The convergence depends on the initial value and how it is close to the actual minimum. If initial value of -0.7 is used, the convergence is achieved.

k	λ _k	G [/]	G //	λ _{k+1}
1	-0.7	1.764	0.84	-2.8
2	-2.8	-169	215	-2.01
3	-2.01	-49.2	97.51	-1.51
4	-1.51	-13.9	45.66	-1.2
5	-1.2	-3.56	23.31	-1.05
6	-1.05	-0.69	14.58	-1
7	-1	-0.06	12.22	-1
8	-1	-0	12	-1
9	-1	-0	12	-1
10	-1	0	12	-1

Line Search (Newoton's Method)

EXAMPLE

If initial value of -0.6 is used, the convergence is not achieved.

k	l _k	G [/]	G //	l _{k+1}
1	-0.6	1.728	-1.44	0.6
2	0.6	1.728	1.44	-0.6
3	-0.6	1.728	-1.44	0.6
4	0.6	1.728	1.44	-0.6
5	-0.6	1.728	-1.44	0.6
6	0.6	1.728	1.44	-0.6
7	-0.6	1.728	-1.44	0.6
8	0.6	1.728	1.44	-0.6
9	-0.6	1.728	-1.44	0.6
10	0.6	1.728	1.44	-0.6

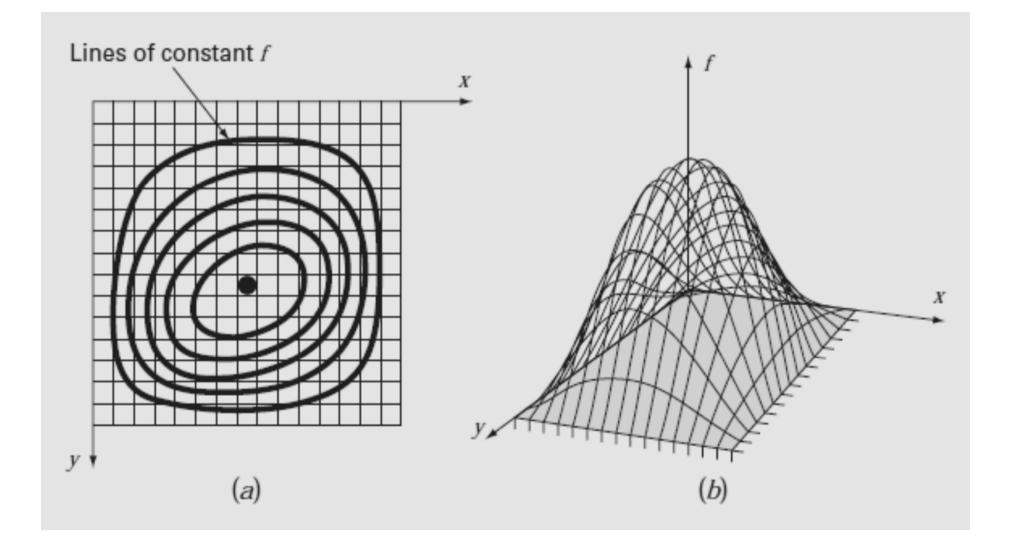
TWO-DIMENSIONAL OPTIMIZATION

> The General problem definition is:

Minimize the Objective Function $G(x_i)$

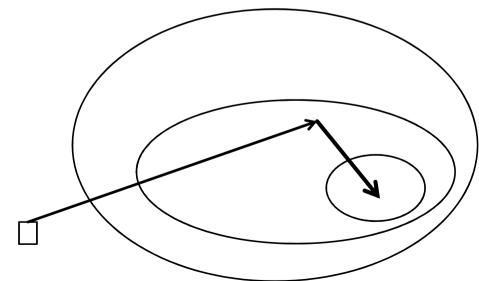
Where i=1,n

- To minimize the objective function there are two approaches:
 - ✓ Multidimensional Search without using Derivatives.
 - ✓ Multidimensional Search using Derivatives.



To optimize a multi-dimensional Objective function, we need:

- \succ A direction that we search for the minimum on it.
- Line Search to find the minimum value on this direction.



Multidimensional Search Without Using Derivatives

≻ Cyclic Method.

≻ Hooke and Jeeves.

Rosenbrock

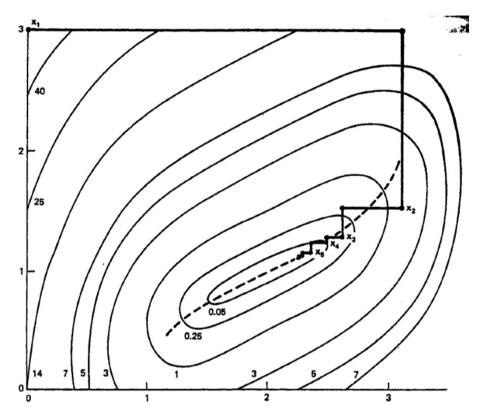
Cyclic Method

1- Chose a scalar value $\varepsilon > 0$ to be used to terminate the algorithm (i.e. $||X_{k+1} - X_k|| < \varepsilon$).

2- Choose an initial point X_{1.}

3- set $y_1 = X_1$ and K=1 (cycles Counter) and J=1 (Line search Counter)

4- Let λ be an optimal solution to minimize $G(y_j+\lambda d_j)$ where d_j is the coordinate directions (i.e. $d_2 = (1 \ 0 \ 0 \ ...), d_2 = (0 \ 1 \ 0 \ 0 \ ...), d_n = (0 \ 0 \ ... \ 1))$



5- Let $y_{j+1} = y_j + \lambda d_j$

6- Repeat Step 4 using j+1, if $j \le n$ otherwise goto step 7

7- Let $X_{k+1} = y_{n+1}$ and replace k by k+1 and repeat step 3 till $||X_{k+1} - X_k|| < \varepsilon$

EXAMPLE

Minimize

Iteration	X _k	,			,	-
k	f(x,)	j	dj	y,	λ,	y _{j+1}
1	(0.00, 3.00)	1	(1.0, 0.0)	(0.00, 3.00)	3.13	(3.13, 3.00)
	52.00	2	(0.0, 1.0)	(3.13, 3.00)	-1.44	(3.13, 1.56
2	(3.13, 1.56)	1	(1.0, 0.0)	(3.13, 1.56)	-0.50	(2.63, 1.56
	1.63	2	(0.0, 1.0)	(2.63, 1.56)	-0.25	(2.63, 1.31
3	(2.63, 1.31)	1	(1.0, 0.0)	(2.63, 1.31)	-0.19	(2.44, 1.31
	0.16	2	(0.0, 1.0)	(2.44, 1.31)	-0.09	(2.44, 1.22
4	(2.44, 1.22)	1	(1.0, 0.0)	(2.44, 1.22)	-0.09	(2.35, 1.22
	0.04	2	(0.0, 1.0)	(2.35, 1.22)	-0.05	(2.35, 1.17
5	(2.35, 1.17)	1	(1.0, 0.0)	(2.35, 1.17)	-0.06	(2.29, 1.17
	0.015	2	(0.0, 1.0)	(2.29, 1.17)	-0.03	(2.29, 1.14
6	(2.29, 1.14)	1	(1.0, 0.0)	(2.29, 1.14)	-0.04	(2.25, 1.14
	0.007	2	(0.0, 1.0)	(2.25, 1.14)	-0.02	(2.25, 1.12
7	(2.25, 1.12)	1	(1.0, 0.0)	(2.25, 1.12)	-0.03	(2.22, 1.12
	0.004	2	(0.0, 1.0)	(2.22, 1.12)	-0.01	(2.22, 1.11

 $G(X_i) = (x_1-2)^4 + (x_1-2x_2)^2$ Where i=1,2

Cyclic Method Convergence problems

1- If G is differentiable then the method converges to a stationary point

Cyclic Method Convergence problems

2- If G has ridges, then Cyclic method may not converge to

the absolute minimum

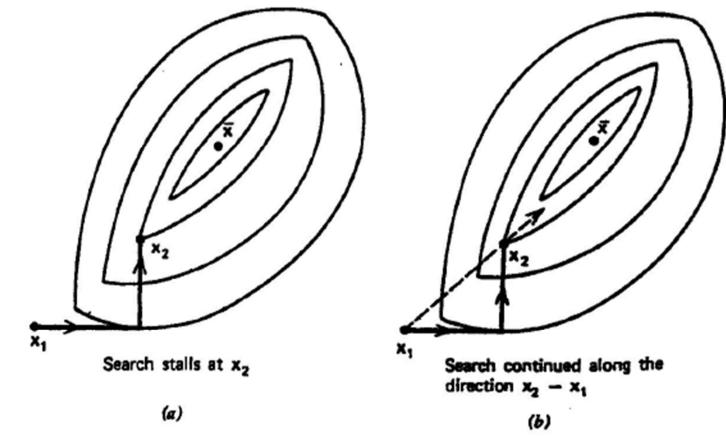


Figure 8.8 Illustration of the effect of a ridge.

Hooke and Jeevs

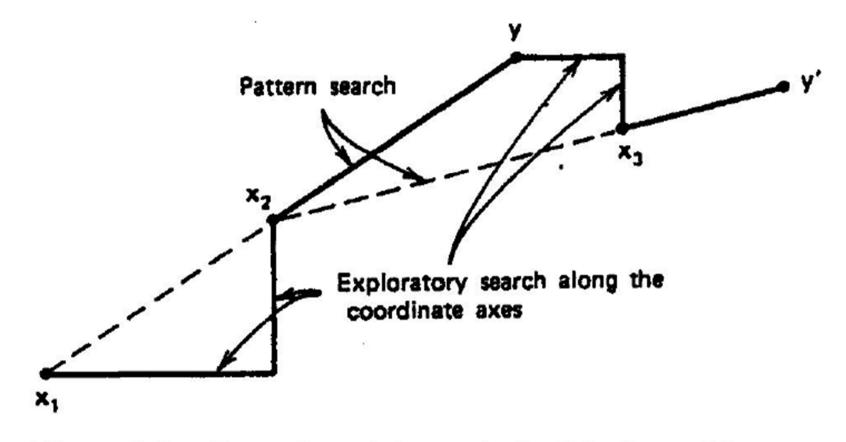
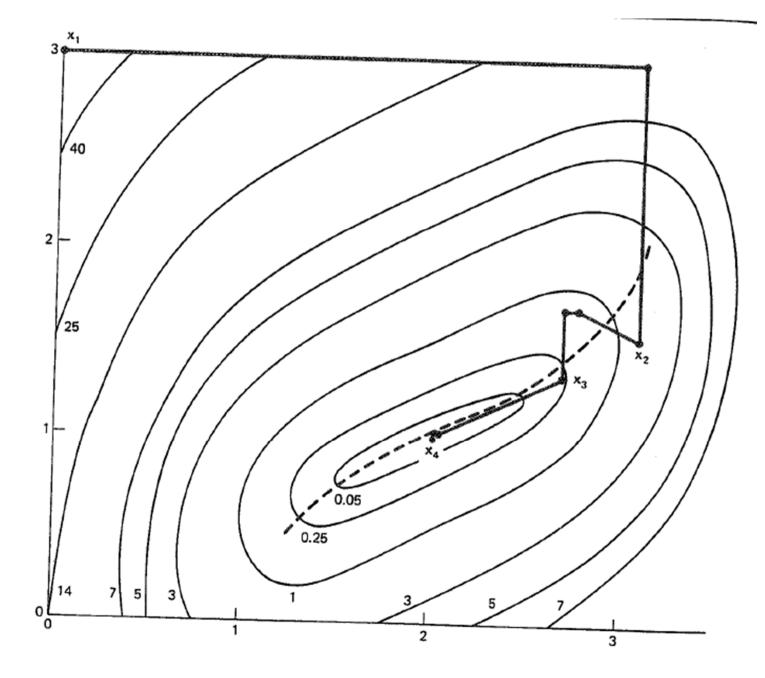


Figure 8.9 Illustration of the method of Hooke and Jeeves.

Hooke and Jeevs



Hooke and Jeevs

1- Choose a scalar value ε >0 to be used to terminate the algorithm (i.e. $\|X_{k+1} - X_k\| < \varepsilon$)

2- Choose an initial point X_1 and set k=1

3- Make one Cycle from the Cyclic Method to obtain X_{k+1}

4- Define the new search direction as $d = X_{k+1} - X_k$ and make a line search to get the minimum at y'

5- Set k=k+1 and repeat Step 3 using y' as an initial value

6- Keep repeating till $||X_{k+1} - X_k|| < \varepsilon$

EXAMPLE

$$G(X_i) = (x_1-2)^4 + (x_1-2x_2)^2$$
 Where i=1,2

Table 8.7 Summary of Computations for the Method of Hooke and Jeeves Using Line Searches

Iteration k	$\begin{array}{c} \mathbf{x}_k\\ f(\mathbf{x}_k) \end{array}$	j	y _j	\mathbf{d}_{j}	λ_j	У _{j+1}	d	λ	$y_3 + \hat{\lambda} d$
1	(0.00, 3.00) 52.00	1 2	(0.00, 3.00) (3.13, 3.00)	(1.0, 0.0) (0.0, 1.0)	3.13 -1.44	(3.13, 3.00) (3.13, 1.56)	(3.13, 1.44)	-0.10	(2.82, 1.70)
2	(3.13, 1.56) 1.63	1 2	(2.82, 1.70) (2.70, 1.70)	(1.0, 0.0) (0.0, 1.0)	-0.12 -0.35	(2.70, 1.70) (2.70, 1.35)	(-0.43, -0.21)	 1.50	(2.06, 1.04)
3	(2.70, 1.35) 0.24	1 2	(2.06, 1.04) (2.04, 1.04)	(1.0, 0.0) (0.0, 1.0)	$-0.02 \\ -0.02$	(2.04, 1.04) (2.04, 1.02)	(-0.66, -0.33)	0.06	(2.00, 1.00)
4	(2.04, 1.02) 0.000003	1 2	(2.00, 1.00) (2.00, 1.00)	(1.0, 0.0) (0.0, 1.0)	0.00 0.00	(2.00, 1.00) (2.00, 1.00)			
5	(2.00, 1.00) 0.00								

Multidimensional Search Using Derivatives

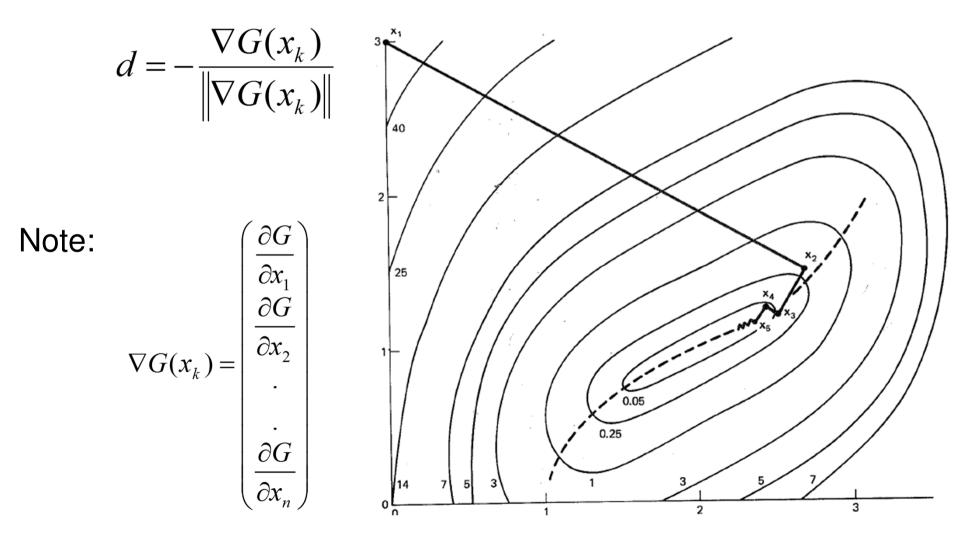
1- Steepest Descent Method

2- Newton Method

3- Conjugate Direction Method

Steepest Descent Method

1- Line search will take the following direction each global iteration



EXAMPLE

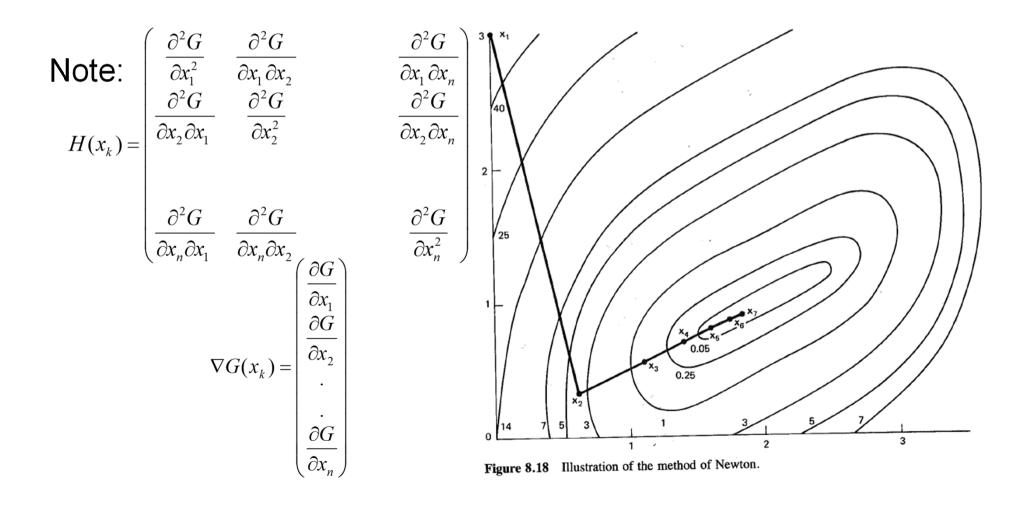
$G(X_i) = (x_1-2)^4 + (x_1-2x_2)^2$ Where i=1,2

	1 able 0.11	Summary of Computations for the Method of Steepest Descent				
Iteration k	\mathbf{x}_k $f(\mathbf{x}_k)$	$\nabla f(\mathbf{x}_k)$	$\ \nabla f(\mathbf{x}_k)\ $	$\mathbf{d}_k = -\nabla f(\mathbf{x}_k)$	λ _k	X _{k+1}
1	(0.00, 3.00) 52.00	(-44.00, 24.00)	50.12	(44.00, -24.00)		
2	(2.70, 1.51) 0.34	(0.73, 1.28)	1.47	(-0.73, -1.28)	0.24	(2.52, 1.20)
3	(2.52, 1.20) 0.09	(0.80, -0.48)	0.93	(-0.80, 0.48)	0.11	(2.43, 1.25)
4	(2.43, 1.25) 0.04	(0.18, 0.28)	0.33	(-0.18, -0.28)	0.31	(2.37, 1.16)
5	(2.37, 1.16) 0.02	(0.30, -0.20)	0.36	(-0.30, 0.20)	0.12	(2.33, 1.18)
6	(2.33, 1.18) 0.01	(0.08, 0.12)	0.14	(-0.08, -0.12)	0.36	(2.30, 1.14)
7	(2.30, 1.14) 0.009	(0.15, -0.08)	0.17	(-0.15, 0.08)	0.13	(2.28, 1.15)
8	(2.28, 1.15) 0.007	(0.05, 0.08)	0.09			

 Table 8.11
 Summary of Computations for the Method of Steepest Desce

NEWTON Method

1- Line search will take the following direction each global iteration $x_{k+1} = x_k - H(x_k)^{-1} \nabla G(x_k)$



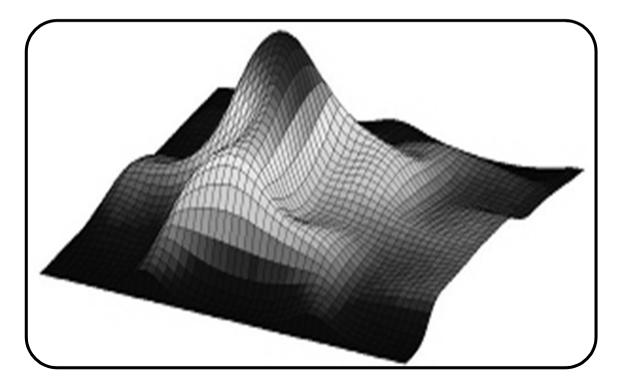
EXAMPLE

$G(X_i) = (x_1-2)^4 + (x_1-2x_2)^2$ Where i=1,2

Iteration k	\mathbf{x}_k $f(\mathbf{x}_k)$	$\nabla f(\mathbf{x}_k)$	$\mathbf{H}(\mathbf{x}_k)$	$\mathbf{H}(\mathbf{x}_k)^{-1}$	$-\mathbf{H}(\mathbf{x}_k)^{-1}\nabla f(\mathbf{x}_k)$	X _{k+1}
1	(0.00, 3.00) 52.00	(-44.0, 24.0)	$\begin{bmatrix} 50.0 & -4.0 \\ -4.0 & 8.0 \end{bmatrix}$	$\frac{1}{384} \begin{bmatrix} 8.0 & 4.0 \\ 4.0 & 50.0 \end{bmatrix}$	(0.67, -2.67)	(0.67, 0.33)
2	(0.67, 0.33) 3.13	(-9.39, -0.04)	$\begin{bmatrix} 23.23 & -4.0 \\ -4.0 & 8.0 \end{bmatrix}$	$\frac{1}{169.84} \begin{bmatrix} 8.0 & 4.0 \\ 4.0 & 23.23 \end{bmatrix}$	(0.44, 0.23)	(1.11, 0.56)
3	(1.11, 0.56) 0.63	(-2.84, -0.04)	$\begin{bmatrix} 11.50 & -4.0 \\ -4.0 & 8.0 \end{bmatrix}$	$\frac{1}{76} \begin{bmatrix} 8.0 & 4.0 \\ 4.0 & 11.50 \end{bmatrix}$	(0.30, 0.14)	(1.41, 0.70)
4	(1.41, 0.70) 0.12	(-0.80, -0.04)	$\begin{bmatrix} 6.18 & 4.0 \\ -4.0 & 8.0 \end{bmatrix}$	$\frac{1}{33.44} \begin{bmatrix} 8.0 & 4.0 \\ 4.0 & 6.18 \end{bmatrix}$	(0.20, 0.10)	(1.61, 0.80)
5	(1.61, 0.80) 0.02	(-0.22, -0.04)	$\begin{bmatrix} 3.83 & -4.0 \\ -4.0 & 8.0 \end{bmatrix}$	$\frac{1}{14.64} \begin{bmatrix} 8.0 & 4.0 \\ 4.0 & 3.83 \end{bmatrix}$	(0.13, 0.07)	(1.74, 0.87)
6	(1.74, 0.87) 0.005	(-0.07, 0.00)	$\begin{bmatrix} 2.81 & -4.0 \\ -4.0 & 8.0 \end{bmatrix}$	$\frac{1}{6.48} \begin{bmatrix} 8.0 & 4.0 \\ 4.0 & 2.81 \end{bmatrix}$	(0.09, 0.04)	(1.83, 0.91)
7	(1.83, 0.91) 0.0009	(0.0003, -0.04)				

 Table 8.12
 Summary of Computations for the Method of Newton

MatLAB Program OPTIMIZATION TOOL



Useful for larger, more structured optimization problems.

Sample functions include: Linprog, quadprog, fmincon, fminbnd

Use MATLab Help to know the use of each function

Line Search (Fibonacci Search Method)

EXAMPLE

Find the minimum of

 $G(x)=x^2+2x$

Subject to

 $-3 \le x \le 5$ (Possible uncertainty interval)

The acceptable final uncertainty interval length is 0.2

Unconstrained Optimization Example:

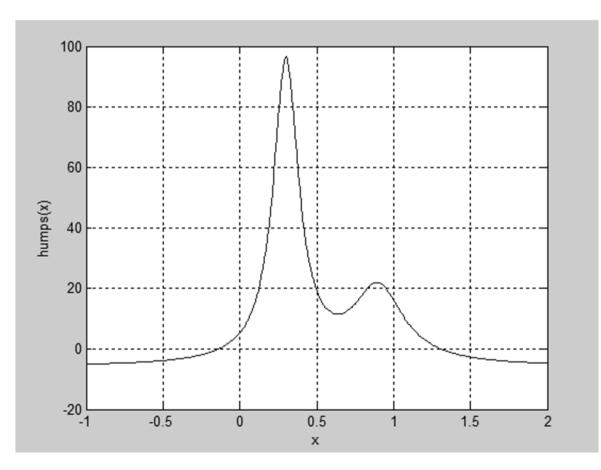
>> $x = fminbnd(@(x)(x.^2+2*x),-3,5)$ Find minimum of singlevariable function on fixed interval $x = fminbnd(@(x)(x.^2+2*x),-3,5)$ Definition of Function of Funct

-1

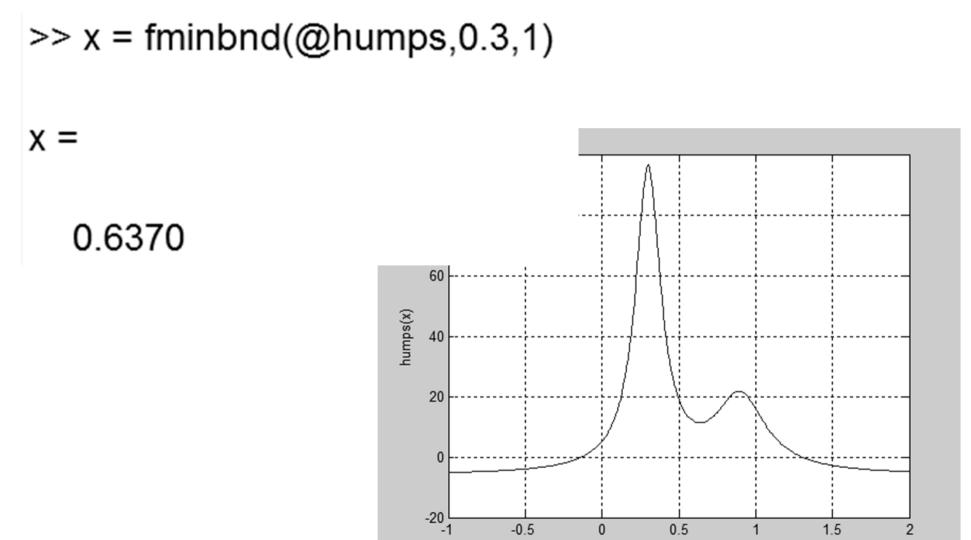
Mathworks

Unconstrained Optimization Example:

>> x = -1:.01:2; y = humps(x); plot(x,y) xlabel('x') ylabel('humps(x)') grid on



Unconstrained Optimization Example:



х

Unconstrained Optimization Example:

Consider the problem of finding a minimum of the function:

$$x \exp(-(x^2 + y^2)) + (x^2 + y^2)/20.$$

Unconstrained Optimization Example:

Plot the function to get an idea of where it is minimized.

 $f = @(x,y) x.*exp(-x.^2-y.^2)+(x.^2+y.^2)/20;$ ezsurfc(f,[-2,2])

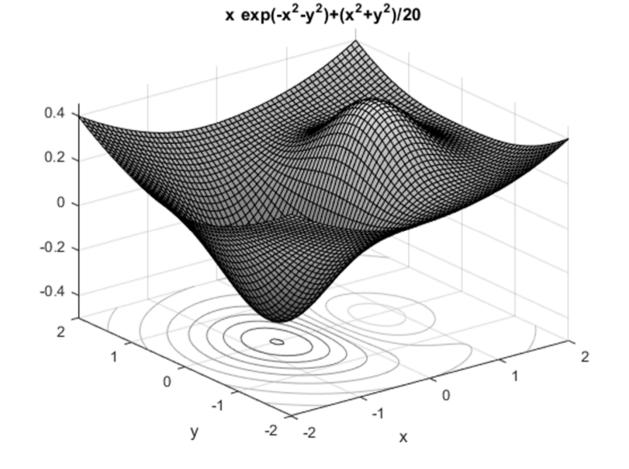
Unconstrained Optimization Example:

Plot the function to get an idea of where it

is minimized.

Minimum is at

(-0.5,0)



Date	Topic		
Tuesday 10 - 5	Optimization		
Tuesday 17 - 5	Curve Fitting		
Tuesday 24 - 5	Numerical Integration		
Tuesday 31 - 5	Fourier Analysis		