Cairo University- Faculty of Engineering
Structural Engineering Department

Project
 Due Date: 2/6/2016

Level 1: Maximum Possible Grade 10

Submittals: MatLab File - Snapshots of Solution - Comparison with SAP2000 Solution for Level 1 Projects including Finite Element Analysis Graphs showing deformations.

Project Number	Description
1	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: Stiffnesses of the members are $k=E A / L$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member.
2	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member.
3	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member.

Project Number	Description
4	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member.
5	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member.
6	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member. $(\mathrm{S}=5 \mathrm{~m}, \mathrm{H}=3 \mathrm{~m})$

Project Number	Description
7	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member.
8	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member.
9	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member.

Project
Number

| Project |
| :--- | :--- |
| Number |\quad| Develop a MatLAB program that can determine the displacements at |
| :--- |
| different nodes and forces in members for the following 2-D truss: |

Project Number	Description
16	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member.
17	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member.
18	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member.

Project Number	Description
19	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member.
20	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member.
21	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member.

| Project |
| :---: | :--- |
| Number | Develop a MatLAB program that can determine the displacements at

Project Number	Description
25	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member.
26	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member.
27	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member.

Project Number	Description
28	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member. ($\Theta=30^{\circ}$)
29	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member.
30	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member.

Project Number	Description
31	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member.
32	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member.
33	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member.

Project Number	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss:
34	Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member. different nodes and forces in members for the following 2-D truss:
35	Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member.
Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: elasticity, A represents the cross sectional area and L is the length of the member.	
36	

| Project |
| :--- | :--- | :--- |
| Number |\quad| Develop a MatLAB program that can determine the displacements at |
| :--- |
| different nodes and forces in members for the following 2-D truss: |

Project Number	Description
40	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member.
41	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member.
42	Develop a MatLAB program that can determine the displacements at different nodes and forces in members for the following 2-D truss: Stiffnesses of the members are $\mathrm{k}=\mathrm{EA} / \mathrm{L}$ where E is the modulus of elasticity, A represents the cross sectional area and L is the length of the member.

Level 2: Maximum Possible Grade 7

Submittals: MatLab File - Snapshots of Solution - Comparison with MatLAB Built-in function solution.

Project Number	Description
1	Develop a MatLAB program that can solve a system of linear algebraic equations (5 equations) using an iterative method.
2	Develop a MatLAB program that can decompose a matrix using Choleski's decomposition method and compare the efficiency of your solution with the built-in function.
3	Develop a MatLAB program that can decompose a matrix using Doolittle's decomposition method and compare the efficiency of your solution with the built-in function.
4	Develop a MatLAB program that can determine the determinant of a matrix and compare the efficiency of your solution with the built-in function.
5	Develop a MatLAB program that can solve a system of linear algebraic equations using Gauss Elimination method.
6	Develop a MatLAB program that can determine the inverse of a matrix using LU decomposition with pivoting. (Do not use the built-in LU decomposition function)
7	Develop a MatLAB program that can determine the eigen values and the eigen vectors for a matrix using iterative method and compare the efficiency of your solution with the built-in function.
8	Develop a MatLAB program that can determine the roots for the nonlinear equation: using Newton-Raphson method. $\mathrm{f}(\mathrm{x})=3 \mathrm{x}^{5}+2 \mathrm{x}^{2}+\mathrm{x}-10$ (Do not use the built-in function)
9	Develop a MatLAB program that can determine the roots for the nonlinear equation: using the bisection method. $\mathrm{f}(\mathrm{x})=3 \mathrm{x}^{5}+2 \mathrm{x}^{2}+\mathrm{x}-10$ (Do not use the built-in function)
10	Develop a MatLAB program that can determine the roots for the nonlinear equation: using the false position method. $\mathrm{f}(\mathrm{x})=3 \mathrm{x}^{5}+2 \mathrm{x}^{2}+\mathrm{x}-10$ (Do not use the built-in function)
11	Develop a MatLAB program that can determine the roots for the nonlinear equation: using Newton-Raphson method. $f(x)=x-\cos (x)$ (Do not use the built-in function)
12	Develop a MatLAB program that can determine the roots for the nonlinear equation: using the bisection method. $f(x)=x-\cos (x)$ (Do not use the built-in function)

Project Number	Description
13	Develop a MatLAB program that can determine the roots for the nonlinear equation: using the false position method. $\mathrm{f}(\mathrm{x})=\mathrm{x}-\cos (\mathrm{x})$ (Do not use the built-in function)
14	Develop a MatLAB program that can determine the roots for the nonlinear equation: using Newton-Raphson method. $f(x)=x^{2}-3 \sin (x)+2$ (Do not use the built-in function)
15	Develop a MatLAB program that can determine the roots for the nonlinear equation: using the bisection method. $f(x)=x^{2}-3 \sin (x)+2$ (Do not use the built-in function)
16	Develop a MatLAB program that can determine the roots for the nonlinear equation: using the false position method. $f(x)=x^{2}-3 \sin (x)+2$ (Do not use the built-in function)
17	Develop a MatLAB program that can determine the roots for the nonlinear equation: using Newton-Raphson method. $x \cdot \cosh (50 / x)=x+10$ (Do not use the built-in function)
18	Develop a MatLAB program that can determine the roots for the nonlinear equation: using the bisection method. $x \cdot \cosh (50 / x)=x+10$ (Do not use the built-in function)
19	Develop a MatLAB program that can determine the roots for the nonlinear equation: using the false position method. $\mathrm{x} \cdot \cosh (50 / \mathrm{x})=\mathrm{x}+10$ (Do not use the built-in function)
20	Develop a MatLAB program that can search for the minimum value for: $\mathrm{F}(\mathrm{x})=2-e^{-(x-5)^{2}}$ Using Fibonacci Method. (Do not use the built-in function)
21	Develop a MatLAB program that can search for the minimum value for: $\mathrm{F}(\mathrm{x})=2-e^{-(x-5)^{2}}$ Using Newton Method. (Do not use the built-in function)
22	Develop a MatLAB program that can search for the maximum value for: $F(x)=2 \cdot \sin (x)-x^{2} / 10$ Using Fibonacci Method. (Do not use the built-in function)

Project Number	Description
23	Develop a MatLAB program that can search for the maximum value for: $F(x)=2 \cdot \sin (x)-x^{2} / 10$ Using Newton Method. (Do not use the built-in function)
24	Develop a MatLAB program that can search for the maximum value for: $F(x)=-x^{2}+8 x$ Using Fibonacci Method. (Do not use the built-in function)
25	Develop a MatLAB program that can search for the maximum value for: $F(x)=-x^{2}+8 x$ Using Newton Method. (Do not use the built-in function)
26	Develop a MatLAB program that can search for the maximum value for: $F(x)=x^{3}-6 x^{2}+9 x$ Using Fibonacci Method. (Do not use the built-in function)
27	Develop a MatLAB program that can search for the maximum value for: $F(x)=x^{3}-6 x^{2}+9 x$ Using Newton Method. (Do not use the built-in function)

