

Assignment (2)

Due Date: 10/5/2016

- 1- Using the power method and the inverse power method find the Eigen values and Eigen vectors for Matrix A: $A = \begin{bmatrix} 6 & 2 \\ 2 & 3 \end{bmatrix}$.
- 2- Employ Hotelling's method to find all the Eigen values and Eigen vectors for Matrix B:
 - $\mathbf{B} = \begin{bmatrix} 7 & 4 & 1 \\ 4 & 4 & 4 \\ 1 & 4 & 7 \end{bmatrix}.$
- 3- For the equation: $f(x) = 10 + 20 x 42 x^2 + 33 x^3 9 x^4 + x^5$
 - i. Determine all the roots graphically.
 - ii. Use bisection and false position methods to determine the root to $\epsilon_a = 10\%$. Employ initial guesses of $x_1 = 0.5$ and $x_u = 1$.
- 4- Determine the positive real root of $\ln(x^4) = 0.7$:
 - i. Analytically.
 - ii. Graphically.
 - iii.Using three iterations of the false-position and bisection methods with initial guesses of 0.5 and 2. Compute the approximate error ε_a and the true error ε_t after each iteration. Comment on the results.
- 5- Determine a root of $f(x) = -x^2 + 1.8x + 2.5$:
 - i. Graphically.
 - ii. Fixed-point iteration method.
 - iii.Newton-Raphson method.
 - Use $x_0 = 5$, perform computations until ϵ_a is less than 0.05%.
- 6- Locate the first positive root of $f(x) = \sin x + \cos (1 + x^2) 1$ using four iterations of the Secant method with initial guesses:
 - i. $x_i^{-1} = 1.0$ and $x_i = 3.0$.
 - ii. $x_i^{-1} = 1.5$ and $x_i = 2.5$.
 - $iii.x_i^{-1} = 1.5$ and $x_i = 2.25$.

Use the graphical method to explain your results.

- 7- Determine the real root of $x^{3.5} = 80$, with the modified secant method to within $\epsilon_a = 0.1\%$ using an initial guess of $x_0 = 3.5$ and $\delta = 0.01$.
- 8- Determine the roots of the following simultaneous nonlinear equations using (i) fixedpoint iteration and (ii) the Newton-Raphson method:

 $y = x^2 + 1$ $y = 2 \cos x$

Use a graphical approach to obtain initial guesses.