Assignment (2)

Due Date: 10/5/2016

1- Using the power method and the inverse power method find the Eigen values and Eigen vectors for Matrix A: $A=\left[\begin{array}{ll}6 & 2 \\ 2 & 3\end{array}\right]$.

2- Employ Hotelling's method to find all the Eigen values and Eigen vectors for Matrix B:

$$
B=\left[\begin{array}{lll}
7 & 4 & 1 \\
4 & 4 & 4 \\
1 & 4 & 7
\end{array}\right]
$$

3- For the equation: $f(x)=10+20 x-42 x^{2}+33 x^{3}-9 x^{4}+x^{5}$
i. Determine all the roots graphically.
ii. Use bisection and false position methods to determine the root to $\epsilon_{a}=10 \%$. Employ initial guesses of $x_{1}=0.5$ and $x_{u}=1$.
4- Determine the positive real root of $\ln \left(x^{4}\right)=0.7$:
i. Analytically.
ii. Graphically.
iii.Using three iterations of the false-position and bisection methods with initial guesses of 0.5 and 2 . Compute the approximate error ε_{a} and the true error ε_{t} after each iteration. Comment on the results.

5- Determine a root of $f(x)=-x^{2}+1.8 x+2.5$:
i. Graphically.
ii. Fixed-point iteration method.
iii.Newton-Raphson method.

Use $\mathrm{x}_{0}=5$, perform computations until ϵ_{a} is less than 0.05%.
6- Locate the first positive root of $f(x)=\sin x+\cos \left(1+x^{2}\right)-1$ using four iterations of the Secant method with initial guesses:
i. $\mathrm{x}_{\mathrm{i}}^{-1}=1.0$ and $\mathrm{x}_{\mathrm{i}}=3.0$.
ii. $\mathrm{x}_{\mathrm{i}}{ }^{-1}=1.5$ and $\mathrm{x}_{\mathrm{i}}=2.5$.
iii. $\mathrm{x}_{\mathrm{i}}^{-1}=1.5$ and $\mathrm{x}_{\mathrm{i}}=2.25$.

Use the graphical method to explain your results.

7- Determine the real root of $x^{3.5}=80$, with the modified secant method to within $\epsilon_{a}=0.1 \%$ using an initial guess of $\mathrm{x}_{\mathrm{o}}=3.5$ and $\delta=0.01$.

8- Determine the roots of the following simultaneous nonlinear equations using (i) fixedpoint iteration and (ii) the Newton-Raphson method:

$$
\begin{gathered}
y=x^{2}+1 \\
y=2 \cos x
\end{gathered}
$$

Use a graphical approach to obtain initial guesses.

