Assignment (1)
 Due Date: 15/3/2016

1- Using the graphical method, solve the following system of equations:

$$
\begin{aligned}
& x_{1}-x_{2}=10 \\
& 2 x_{1}-3 x_{2}=-6
\end{aligned}
$$

2- For matrix $\mathrm{A}=\left[\begin{array}{ccc}2 & 1 & 1 \\ 4 & 4 & 1 \\ 6 & -5 & 8\end{array}\right]$:
a. Determine the determinate of the matrix.
b. Find the LU decomposition of matrix A.
c. Using the above, solve the system of equations: $A x=\left[\begin{array}{ll}4 & 7 \\ 1\end{array}\right]^{\mathrm{T}}$

3- Given the following system of equations, use Cramer's rule to solve:

$$
\begin{aligned}
& x_{1}-x_{2}+2 x_{3}=2 \\
& -x_{1}+5 x_{2}+4 x_{3}=6 \\
& 2 x_{1}+4 x_{2}+29 x_{3}=-3
\end{aligned}
$$

4- Use Gauss elimination to solve the following system of equations:

$$
\begin{aligned}
& 4 x_{1}+x_{2}-x_{3}=-2 \\
& 5 x_{1}+x_{2}+2 x_{3}=4 \\
& 6 x_{1}+x_{2}+x_{3}=6
\end{aligned}
$$

5- Use the Gauss-Seidel method to solve the following system.

$$
\begin{aligned}
& 4 x_{1}+x_{2}-x_{3}=3 \\
& 2 x_{1}+7 x_{2}+x_{3}=19 \\
& x_{1}-3 x_{2}+12 x_{3}=31
\end{aligned}
$$

